Biological Psychology 26 (1988) 3-67 3
North-Holland

MODERN MENTAL CHRONOMETRY *

David E. MEYER **
Department of Psychology, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Allen M. OSMAN
Department of Psychology, University of California at San Diego, La Jolla, CA 92093, U.S.A.

David E. IRWIN
Department of Psychology, Michigan State University, East Lansing, MI 48824, U.S.A.

Steven YANTIS
Department of Psychology, Johns Hopkins University, Baltimore, MD 21218, U.S.A.

Mental chronometry, in which conclusions about human information processing are reached
through measures of subjects’ reaction time, has contributed substantially to studies of cognition
and action. During the evolution of the chronometric paradigm, several key issues have emerged.
The issues concern (a) the existence of separable processing stages, (b) the degree to which various
stages of processing produce partial outputs before they are completed, and (c) the discrete versus
continuous form of the outputs. To obtain added temporal resolution, new reaction-time proce-
dures have been developed, including special response-priming and speed-accuracy decomposition
techniques that focus on quantitative patterns of reaction-time distributions and error rates. The
present article summarizes these developments, starting with a historical review of chronometric
research and proceeding to a survey of recent empirical and theoretical innovations. We also
discuss the relevance and potential future impact of complementary work by cognitive psycho-
physiologists on event-related brain potentials and other physiological variables.

1. Introduction

As the scientific study of human information processing has progressed
from the middle of the nineteenth century to the present day, experimental

* This article is based on an invited tutorial presentation given at the Fourth International
Conference on Cognitive Neuroscience, Dourdan, France, June, 1987. Support for portions of
the research reported herein was provided by grant RO1 MH 38845 from the National
Institute of Mental Health to The University of Michigan, David E. Meyer, Principal
Investigator. We thank Sylvan Kornblum, John Kounios, Jeff Miller, and J.E. Keith Smith for
their encouragement and many helpful suggestions. The article has also benefited greatly from
editorial comments by Michael G.H. Coles, William Gehring, and two anonymous reviewers.
Correspondence regarding this article and requests for reprints should be addressed to: David
E. Meyer, Human Performance Center, Department of Psychology, University of Michigan,
330 Packard Rd., Ann Arbor, M1, 48104, U.S.A.

* x

0301-0511/88,/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)



4 D.E. Meyer et al. / Modern mental chronometry

psychologists have focused considerable attention on the dynamics of cogni-
tion and action. In this endeavor, it has been frequently assumed that mental
processes are manifested through certain behavioral measures, including sub-
jects’ reaction time (RT), response accuracy, and speed-accuracy tradeoffs
(Lachman, Lachman, & Butterfield, 1979; Pachella, 1974; Posner & McLeod,
1982; Smith, 1968; Taylor, 1976; Woodworth, 1938). To obtain and analyze
such measures, numerous empirical procedures and theoretical models have
been developed (e.g., Luce, 1986; McClelland, 1979; Meyer, Irwin, Osman, &
Kounios, 1988; Miller, 1982; Sternberg, 1969; Townsend & Ashby, 1983). On
the basis of them, extensive inferences have been made concerning the nature
of sensation, perception, memory, attention, language, reasoning, problem
solving, decision making, and movement control. The overall paradigm is
often referred to as mental chronometry (Posner, 1978).

Complementing the chronometric paradigm, psychophysiologists have
sought additional latent indicators of the mental and physical processes that
mediate overt performance (Coles, Donchin, & Porges, 1986). The latter
research, which falls under the rubric cognitive psychophysiology (Donchin,
1981, 1984), has led to studies involving event-related brain potentials (ERPs),
electromyographic (EMG) activity, and other somatic variables. Some results
of these studies suggest that the psychophysiological approach can signifi-
cantly clarify and extend conclusions about information processing reached
from reaction-time and response-accuracy data (e.g., Coles, Gratton, Bashore,
Eriksen, & Donchin, 1985; Duncan-Johnson & Donchin, 1982; Ford, Roth,
Mohs, Hopkins, & Kopell, 1979; Gaillard & Verduin, 1985; Kutas & Hillyard,
1980; Kutas, McCarthy, & Donchin, 1977; Marsh, 1975; McCarthy & Donchin,
1981; Mulder, Gloerich, Brookhuis, Van Dellen, & Mulder, 1984; Renault,
Ragot, Lesevre, & Remond, 1982; Ritter, Simson, & Vaughan, 1983; Ritter,
Simson, Vaughan, & Macht, 1982). At the same time, lessons learned in
mental chronometry may guide the psychophysiological approach, for exam-
ple, facilitating the interpretation of ERP components. Consequently, a grow-
ing wave of enthusiasm has arisen over the wedding of cognitive psychophysi-
ology and the chronometric paradigm (Gaillard & Ritter, 1983; Hillyard &
Kutas, 1983; Ritter, Vaughan, & Simson, 1983; Vaughan & Ritter, 1973;
Wilkinson, 1967).

The present article provides a concise introduction to the chronometric
paradigm and an assessment of the prospects for its marriage with cognitive
psychophysiology. It is intended to be a synopsis for a general audience of
experimental psychologists, psychophysiologists, and cognitive scientists, in-
cluding ones who are relatively unfamiliar with technical aspects of mental
chronometry and psychophysiological research. Given its brevity and selectiv-
ity, this synopsis may seem somewhat biased and oversimplified; the views
expressed herein merely reflect our own personal perspectives on the field.
Readers who seek a thorough, balanced treatment should also consult the
various authoritative reviews cited throughout the remainder of the article.
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What follows is divided into four main parts. In the first part, we introduce
some basic terms and concepts associated with the paradigm of mental
chronometry. Secondly, we summarize the historical evolution of chronometric
research on the human mind, establishing a context from which to appreciate
the current state of affairs. Following this review, we describe some new
techniques developed in our laboratory to supplement classical methods of
mental chronometry. These techniques are by no means the only ones now
under development around the world, but they do offer instructive examples
of recent innovations that a number of investigators have been pursuing.
Finally, we speculate a bit about how such innovations may bear on and
benefit from the psychophysiological approach to studying cognition and
action.

2. Paradigm of mental chronometry

The paradigm of mental chronometry involves experimental procedures in
which a subject (i.e., human or other organism) experiences a series of test
trials. Each trial starts with a warning signal (e.g., light or tone) followed by a
brief foreperiod. The foreperiod serves to maximize the subject’s alertness and
attention. After the foreperiod, a test stimulus (e.g., visual or auditory pattern)
is presented. Given this stimulus, the subject must make an appropriate overt
response (e.g., manual movement) quickly and accurately. The subject’s reac-
tion time (RT) is measured from the onset of the test stimulus until the
response occurs. In a simple reaction-time procedure, for example, there would
be only one possible stimulus and one possible response. In a choice reaction-
time procedure, there would be multiple stimuli and multiple responses, with
different responses assigned to different stimuli. To encourage good perfor-
mance, feedback and payoffs are often provided on the basis of the subject’s
speed and accuracy. For detailed descriptions of these procedures, see Pachella
(1974), Woodworth (1938), and Woodworth and Schlosberg (1954).

2.1. Basic stage model

The rationale of the chronometric paradigm can be appreciated more fully
in terms of a basic stage model for human information processing (Donders,
1868 /1969; Sternberg, 1969). According to this model, performance is media-
ted by a sequence of time-consuming processes, which include perceptual
encoding of a stimulus, retrieving stored information from memory, making
decisions based on this information, and preparing an appropriate response.
Attempts to discover and analyze such processes have motivated much of the
past research involving mental chronometry. The hope has been that through
measures of reaction time and response accuracy, elementary processing stages
would emerge in clear detail.
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2.2. Fundamental questions

To be specific, mental chronometry has concentrated on answering several
fundamental questions about the human information-processing system
(Pachella, 1974; Posner & McLeod, 1982; Smith, 1968; Townsend & Ashby,
1983). The first question is most basic. Are there, in fact, separate component
mental processes that mediate overt responses to stimuli and that take
measurable amounts of time to be completed? Assuming that the answer is
“yes”, one may ask several additional questions about detailed characteristics
of these processes. For example, how many different processes are there?
What transformations occur during each of them? How much time does a
particular process take? Do the processes proceed in a strict sequential fashion
with no temporal overlap among them, or do they operate at least somewhat in
parallel? Are discrete packets of information or continuous quantities of
activation produced as outputs along the way?

At present, we do not have definitive answers to all of these questions.
Indeed, one might wonder whether mental chronometry will ever answer them
completely. The chronometric paradigm is limited in that conclusions from it
are typically based on just two observed dependent variables, namely, reaction
time and response accuracy. Mental chronometry does not provide a direct
look at the underlying processes or products that mediate subjects’ perfor-
mance. Nevertheless, considerable progress has been made over the past 150
years through reaction-time and accuracy data.

3. History of mental chronometry

For purposes of exposition, mental chronometry’s history can be divided
roughly into four periods, as summarized in table 1. We refer to these periods
as The Prehistoric Times, The Golden Age, The Dark Age, and The Renaissance
of mental chronometry. Detailed discussions of them have appeared in several
historical accounts (e.g., Boring, 1950; Lachman et al., 1979; Leonard, 1957;
Woodworth, 1938). On the basis of such accounts, table 1 lists some major
dates and ideas associated with each period.

3.1. Prehistoric Times

The Prehistoric Times of mental chronometry extended from the dawn of
intellectual activity to about the middle of the nineteenth century. Until
around 1850 A.D., many scholars believed that human thought was instanta-
neous and that action was governed by an indivisible mind separate from the
body (Boring, 1950, Chapters 1 and 2). Little or no effort was devoted before
then to devising serious reaction-time procedures, because there seemed no
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Table 1

Historical overview of mental chronometry

Key periods  Dates Major ideas
Prehistoric Before 1850 A.D. Belief in indivisible mind
Times Belief in instantaneous thought
Golden Age 1850 to 1900 A.D. Measurement of neural-conduction time

Development of subtraction method
Discovery of processing stages
Introduction of speed-accuracy tradeoff curves
Dark Age 1900 to 1950 A.D. Criticism of subtraction method
Decline of reaction-time research
Renaissance 1950 A.D. to present  Development of information-processing concepts
Introduction of additive-factor method
Micro-analysis of processing stages
Concentration on serial-versus-parallel distinction
Concentration on discrete-versus-continuous distinction

point in trying to measure something infinitely fast and essentially unanalyza-
ble. Neither the classical Greek nor British philosophers appear to have
stumbled onto the chronometric paradigm, even though they conceived many
other fundamental ideas about cognition and action. This lack of insight even
characterized the views of sophisticated nineteenth-century scientists such as
Johannes Miiller, who is considered by many to have been the father of
experimental physiology, but who still believed that the rate of neural conduc-
tion had the same order of magnitude as the speed of light (Miiller, 1838). As
Miiller put it, “We shall probably never attain the power of measuring the
velocity of nervous action; for we have not the opportunity of comparing its
propogation through immense space, as we have in the case of light” (transla-
tion cited in Boring, 1950, p. 41).

Given the ideas expressed by Miiller (1838), it is ironic that the astronomers
of his day were among the first investigators to seek practical techniques for
measuring the speed of mental processes. Their effort, which presaged the
introduction of the simple reaction-time procedure, was motivated by a desire
to assess individual differences in subjective temporal judgements about the
movements of stars and other heavenly bodies. Some initial results of this
work appeared in a report by Bessel (1823), who formulated the personal
equation, a measure of the difference between two observers’ estimates of the
times at which particular stellar events occurred. These differences could, in
principle, be taken to suggest the existence of variable time-consuming mental
processes whose neurophysiological substrates entail relatively low conduction
rates. Yet the full implications of Bessel’s (1823) report were not appreciated
until quite a while later.
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About 1850, however, circumstances started changing dramatically. The
transition was due largely to innovations by Hermann von Helmholtz, one of
the most influential physicists and neurophysiologists of the nineteenth cen-
tury. Among his many accomplishments, he not only helped articulate the
physical principle for the conservation of energy (Helmholtz, 1847) but also
introduced the simple reaction-time procedure as an experimental tool for
neurophysiological investigation (Helmholtz, 1850,/1853). We may therefore
regard him as a major forerunner of present-day cognitive psychophysiology.

Using the simple reaction-time procedure, Helmholtz (1850,/1853) dis-
covered that the rate of neural conduction in humans is on the order of just 50
m /s, much less than the speed of sound, let alone the speed of light. Although
his discovery may sound trivial from our present perspective, it had a
tremendous impact at the time. As Boring (1950) has noted:

In Helmholtz’s experiment lay the preparation for all the later work of

experimental psychology on the chronometry of mental acts and reaction

times. The most important effect of the experiment and all the research that
followed upon it was... that it brought the soul to time, ...(capturing) the
essential agent of mind in the toils of natural science. ...it did more than
any other single bit of research to advertise the fact that mind is not
ineffable but a proper subject for experimental control and observation by

him who is wise enough to conceive the necessary means. (pp. 42&45)

The research by Helmholtz is particularly relevant for us because it exem-
plifies how the chronometric paradigm can be wedded to a neurophysiological
framework in reaching new intellectual syntheses such as are sought by
cognitive psychophysiology.

3.2. Golden Age

With the initial development and application of the simple reaction-time
procedure, the Golden Age of mental chronometry ensued. It continued for
the next 50 years or so, up to about 1900 A.D. To illustrate how investigation
grew over this and subsequent periods, we have sketched a partial “family
tree” of chronometric research, which appears in fig. 1.

This tree diagram is intended as an informal heuristic framework rather
than a complete taxonomy of mental chronometry. On the right side of the
tree are some noteworthy contributions that, for the most part, have dealt with
conventional reaction-time data in efforts to apply or test the basic stage
model of information processing outlined earlier. On the left side of the tree
are other noteworthy contributions that, by contrast, have emphasized mea-
sures of response accuracy as well as speed (e.g., via speed-accuracy tradeoff
curves) and have entertained alternative models with salient stochastic or
statistical-decision components. For the sake of brevity, we have pruned the
chronometric family tree somewhat arbitrarily, so many additional important
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Fig. 1. A partial family trec of mental chronometry. (The right side of the tree contains some
noteworthy contributions that have dealt primarily with conventional reaction-time data and
direct applications or tests of stage models of information processing. On the left side are other
contributions that have emphasized speed-accuracy tradeoff curves and advocated alternative
models with salient stochastic or statistical-decision components.)

examples are missing from it. Nevertheless, our metaphorical forestry may
help at least a bit in leafing through subsequent material.

3.2.1. Speed-accuracy tradeoff curves

As the left side of fig. 1 indicates, one branch of investigation that stemmed
from Helmholtz’s (1850 ,/1853) original work proceeded onward to research by
Woodworth (1899), who plotted speed-accuracy tradeoff curves in analyzing
data on movement control. These curves involve functions of response accu-
racy (or error rate) versus the speed (or reaction time) with which a subject
performs a given task. Congruent with the time-honored adage, “haste makes
waste,” they typically reveal a tradeoff such that increased speed of perfor-
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mance leads to decreased accuracy. Woodworth (1899) used speed-accuracy
tradeoff curves to show how the spatial precision of voluntary movements
decreases systematically as movement velocity increases. From his results, he
identified several sources of random variability in the human motor system
(cf. Meyer, Abrams, Kornblum, Wright, & Smith, 1988; Meyer, Smith, &
Wright, 1982; Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979). We will
not dwell further on the import of Woodworth’s (1899) discoveries for the
moment, but we will describe later how speed-accuracy tradeoffs are still
highly relevant to mental chronometry.

Meanwhile, let us consider the other branch of investigation that stemmed
from Helmholtz’s original work (fig. 1, right side). This brings us to F.C.
Donders, among the most widely cited investigators in the history of mental
chronometry. There are two principal reasons for Donders’ influence. First, he
supplemented the simple reaction-time procedure by developing the choice
reaction-time procedure, and second, he devised an analytical technique for
estimating the durations of component processing stages (Donders,
1868 /1969).

3.2.2. Subtraction method

Donders’ technique is known as the subtraction method. It provides a way
of analyzing data from three different types of reaction-time procedures,
which Donders called Task A, Task B, and Task C. Task A entails a simple
reaction-time procedure with a single stimulus and response, as Helmholtz
(1850,/1853) used. Task B entails a choice reaction-time procedure with
multiple stimuli and multiple responses. Donders reasoned that Task B would
require a subject to discriminate among the various possible stimuli and to
select among the various possible responses on each trial, whereas Task A
would not require these processes because there would be nothing to dis-
criminate or select among. So he proposed to estimate the combined durations
of the discrimination and selection processes by subtracting the reaction time
for Task A from the reaction time for Task B (Donders, 1868 /1969).

Donders (1868,/1969) also attempted to estimate the duration of each
process separately by examining results from his Task C, which entailed a
go/no-go reaction-time procedure with multiple stimuli but only a single
response. In Task C, subjects had to make a response to one stimulus, but
withhold responding to all other stimuli. According to Donders, Task C
therefore required stimulus discrimination but not response selection, because
subjects would always know beforehand what response to make, if one was
needed. By subtracting the reaction time for Task C from the reaction time for
Task B, he tried to estimate the selection process’s duration. Also, by subtract-
ing the reaction time for Task A from the reaction time for Task C, he tried to
estimate the discrimination process’s duration.

Of course, Donders’ subtraction method requires several strong assump-
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tions (Pachella, 1974; Sternberg, 1969). One assumption is that component
mental processes such as stimulus discrimination and response selection are
strictly successive stages whose durations combine additively to yield an
overall reaction time. Another assumption is that in switching from a simple to
choice or go/no-go reaction-time procedure, stages of processing may be
inserted or deleted in a pure fashion without changing the time course or
outputs of other concomitant processes. If either of these assumptions is
violated, then the whole enterprise would tumble like a house of cards.

3.2.3. Discovery of processing stages

Despite the strong, perhaps dubious, assumptions entailed by it, many
investigators were enthusiastic about Donders’ subtraction method. The rea-
sons for this enthusiasm are obvious. In principle, the method offers the
possibility of measuring stage durations as a function of various factors. By
applying the subtraction method, one might conceivably discover a whole host
of mental processes and analyze their true nature. The prospect was so great
that eminent psychologists like Wilhelm Wundt, the founder of the world’s
first official experimental-psychology laboratory, turned much of their efforts
toward exploiting the subtraction method and discovering stages of informa-
tion processing (e.g., Wundt, 1880).

Wundt’s initial applications of the subtraction method proved extremely
fruitful. As part of his endeavors, a new task called the D-reaction was
introduced. Like Donders’ (1868 ,/1969) earlier Task C, it involved multiple
stimuli and a single response, but subjects had to make this response for each
and every stimulus as soon as they thought that they had identified the
stimulus correctly. Using Task D along with Tasks A, B, and C, Wundt
claimed to have isolated and measured more than half a dozen distinct types
of process, including reflexes, voluntary impulses, perception, apperception,
cognition, association, and judgment (cited in Boring, 1950, p. 149). Numerous
other investigators in Wundt’s laboratory and elsewhere also began exploiting
the chronometric paradigm (e.g., Cattell, 1886; Exner, 1873; Jastrow, 1890;
Lange, 1888; Merkle, 1885).

3.3. Dark Age

Unfortunately, mental chronometry’s early successes were rather short
lived. In 1893, Oswald Kiilpe, one of Wundt’s most influential students,
published a devastating critique of the subtraction method. Kiilpe (1893 ,/1909)
was distressed because the method tended to produce inconsistent results.
Estimates of stage durations obtained in various laboratories often differed
substantially from each other, depending on the experience and mental set of
the subjects being tested. A likely cause of the problem was that the assump-
tion of pure insertion had failed. Switching from one reaction-time procedure
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to another may not merely insert or delete some processing stage; it may also
change the quality of other concomitant stages shared across different tasks
(cf. Ach, 1905; Watt, 1905).

So not long after its star had risen, the subtraction method fell into
disrepute. The fall was sufficiently precipitous that it left the field of mental
chronometry in what might, by contrast, be characterized as a Dark Age. This
period lasted through much of the first half of the twentieth century, during
which there were relatively few studies that compared performance in simple
versus choice or go/no-go reaction-time procedures, and during which only
limited theoretical developments occurred concerning the dynamics of infor-
mation processing. The decline of such chronometric research is apparent in
some subsequent major publications, including Stevens’ (1951) Handbook of
experimental psychology and Osgood’s (1953) Method and theory in experimen-
tal psychology. Neither of these famous works mentioned the word “reaction
time” except briefly in passing, nor did they cite Donders (1868 /1969) and his
seminal contributions.

Of course, we do not mean to imply that research involving mental
chronometry completely ceased from 1900 to 1950. Some ultimately note-
worthy discoveries about the dynamics of cognition and action did appear at
the time (Woodworth, 1938; Woodworth & Schlosberg, 1954). These included
research by Woodrow (1914) on foreperiod effects, Telford (1931) on the
psychological refractory period, Stroop (1935) on perceptual and response
competition, and Mowrer (1940; cf., Gibson, 1941) on subjective expectancies.
Nevertheless, it took a considerable while before this latter work garnered the
full recognition that is deserved.

3.4. Renaissance

Fortunately, around 1950, prospects for the chronometric paradigm started
to brighten once again. Several intellectual forces were responsible for the
Renaissance of mental chronometry. Part of the impetus was provided by
developments in the computer and communication sciences (e.g., Shannon,
1948; Turing, 1950). Through these advances, new theoretical tools became
available for building detailed models of human information processing. Also,
to test such models, experimental psychologists began thinking harder about
how one might collect more powerful reaction-time data. Their efforts have led
to further growth in research with the chronometric paradigm (Lachman et al.,
1979; Luce, 1986; McGill, 1963; Neisser, 1967; Posner & McLeod, 1982;
Smith, 1968; Townsend & Ashby, 1983).

Some places where the growth has occurred are shown among the left
branches of mental chronometry’s family tree (fig. 1). In 1952, for example,
Hick demonstrated how speed-accuracy tradeoff curves may be interpreted on
the basis of ideas from mathematical communication theory, yielding mea-
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sures of subjects’ information-transmission rates (cf. Hyman, 1953; Merkle,
1885). Following Hick’s (1952) work, mathematical models that treat the
tradeoff between speed and accuracy in terms of stochastic processes (e.g.,
random sequential sampling) were tested by Fitts (1954, 1966) and other
investigators (Audley, 1960; LaBerge, 1962; Laming, 1968; Link, 1975; Pike,
1973; Ratcliff, 1978; Stone, 1960). New methods for manipulating and mea-
suring response accuracy as a function of speed were also introduced during
this period (e.g., the response-signal procedure of Schouten & Bekker, 1967,
cf. Reed, 1976; Corbett & Wickelgren, 1978). We will return again to the topic
of speed-accuracy tradeoff curves, but before then, let us direct our attention
to the additional branches at the top right of our tree diagram.

The tree’s top right branches (fig. 1) stem directly from the tradition
established by Donders (1868 /1969). Because of problems encountered with
his subtraction method, some later investigators have sought alternative ways
to study stages of information processing without relying on the assumption of
pure insertion. A major advance along these lines occurred through efforts by
Sternberg (1969), who developed the additive-factor method of analyzing
reaction-time data.

3.4.1. Additive-factor method

Sternberg’s (1969) additive-factor method has two major objectives. One is
to discover stages of processing. The other is to determine exactly what factors
influence these stages. In effect, achieving such goals would help advance
Donders’ (1868 /1969) original theoretical ideas, but because of how it works,
the additive-factor method obviates the dubious assumption of pure insertion
that undermined the subtraction method.

The logic of the additive-factor method is simple but powerful. Suppose
information processing involves a series of strictly successive stages with no
temporal overlap among them. Also, suppose there are three separate factors,
F,, F,, and F;, such that F, influences a relatively early stage of processing
(e.g., stimulus encoding or memory retrieval), while F, and F; influence some
later stage (e.g., response selection). Then these factors ought to have a certain
pattern of effects on mean reaction times. If two factors like F; and F,
influence different stages, their effects should be additive, because under the
serial stage model, reaction time is a sum of the component stage durations.
On the other hand, if two factors like F, and F; influence the same stage, their
effects would most likely interact (Sternberg, 1969).

Reversing this logic, Sternberg (1969) proposed two rules of inference for
interpreting reaction-time data. One rule states that whenever an investigator
finds two or more factors whose effects on mean reaction times are additive, it
may be concluded that at least two distinct stages of processing are involved.
The other rule states that whenever two or more factors whose effects interact
with each other are found, then it may be concluded that they influence at
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least one stage in common. By manipulating various factors and looking for
patterns of additivity and interaction, one may thus try to determine how
many different processing stages exist and what the stages do. In studies of
short-term memory retrieval, for example, Sternberg (1969) used factors such
as the visual quality of stimulus displays, the length of memorized lists, and
the probabilities of alternative responses. These factors had additive effects on
mean reaction times, suggesting at least three different stages: stimulus encod-
ing, memory retrieval, and response selection.

An appealing feature of the additive-factor method is that it does not
require inserting or deleting entire stages of processing. To apply the method,
one merely has to identify factors that influence the component stage dura-
tions underlying mean reaction times within a given task. The method avoids
having to compare results from simple and choice reaction-time procedures,
which made Donders’ (1868 /1969) original approach susceptible to failures in
the assumption of pure insertion.

Still, some other assumptions related to those of Donders (1868 ,/1969) are
embodied in the additive-factor method. In particular, the method assumes
that stages of processing do not have any temporal overlap with each other. It
also assumes that the outputs of stages are discrete all-or-none quanta of
information whose quality does not depend on the levels of whatever factors
are used to manipulate stage durations (Sternberg, 1969). Furthermore, there
is an assumption that the factors can selectively influence the durations of
different stages. If any of these assumptions happen to be violated, then the
logic of the additive-factor method would crumble, just like the subtraction
method did.

3.4.2. Cascade model

An illustration of how one might obtain such violations has been described
by McClelland (1979), who formulated a cascade model of information
processing. Like Sternberg’s (1969) discrete stage model, the cascade model
assumes that subjects’ performance involves processes such as stimulus encod-
ing, memory retrieval, decision making, response selection, and so forth.
However, these processes are not assumed to take place in a strictly serial
fashion or to produce discrete quantized outputs of information. Instead,
McClelland (1979) proposed that several processes may take place in a parallel
contingent fashion, with a continuous flow of activation going from one
process to the next.

Given this arrangement, which seems plausible in terms of known facts
about neural anatomy and physiology, it can be shown that Sternberg’s (1969)
additive-factor method no longer necessarily applies. Contrary to the method’s
inference rules, McClelland (1979) demonstrated how the cascade model can
yield interactive effects of factors on mean reaction times even if those factors
influence functionally different processes. He also demonstrated how the
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cascade model can yield additive-factor effects despite having component
processes that are not strictly serial.

3.4.3. Related issues

A number of other investigators have likewise taken issue with assumptions
embodied in the additive-factor method and discrete serial stage model on
which it rests. During the 1960s, for example, Neisser and his colleagues
reported several well-known studies whose results suggested parallel rather
than serial processing (Neisser, 1963; Neisser & Beller, 1965; Neisser, Novick,
& Lazar, 1963). They found that subjects performed some visual-search tasks
just about as fast for ten target letters as for one or two, albeit with an
increased error rate. After this discovery, Townsend (1974) proved mathemati-
cally that some special cases of parallel-processing models could mimic
apparent serial processing for search tasks in which mean reaction times are
not constant but instead increase linearly with the number of items to be
searched. Such discoveries have stimulated formal analyses from various
alternative theoretical perspectives, including ones with hybrid combinations
of serial and parallel processing (e.g., Schweikert, 1978, 1983; Turvey, 1973).
The conceptual substrate of McClelland’s (1979) cascade model therefore has
a rich and lengthy heritage.

At the same time, further doubts have arisen about the potential value of
conventional reaction-time procedures (cf. fig. 1, left branches). For any
condition of such a procedure, the obtained data may be viewed as constitut-
ing a single point on an underlying speed-accuracy tradeoff curve (i.e., the
so-called macro-tradeoff; Pachella, 1974). From this perspective, one might
argue that more complete results are needed than a conventional reaction-time
procedure can provide. Perhaps inferences about the human information-proc-
essing system necessarily require an entire speed-accuracy tradeoff curve. The
force of the latter argument has motivated some concerned critics to strongly
favor alternative procedures in which response speed and accuracy are
manipulated systematically over a wide range (e.g., Ollman, 1977; Reed, 1976;
Wickelgren, 1977). This would seem particularly appropriate if processing
involves a gradually increasing output of activation and partial information, as
claimed under the cascade model (McClelland, 1979) and other continuous
models (e.g., Edwards, 1965; Eriksen & Schultz, 1979; Ratcliff, 1978). With
these models, subjects have a broad range of options to trade accuracy for
speed, so it may be crucial to determine exactly what strategies they do adopt
as a function of speed stress.

3.5. Important theoretical distinctions

In light of controversies surrounding the conventional reaction-time proce-
dures, additive-factor method, and discrete serial stage model, it has become
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clear that future progress based on the paradigm of mental chronometry will
require dealing more thoroughly with two important theoretical distinctions
(Meyer, Irwin, et al., 1988; Miller, 1988; Townsend & Ashby, 1983). One
distinction concerns the extent to which two (or more) component processes
can and do overlap temporally with each other, embodying parallel rather than
serial execution. The other distinction concerns the extent to which a given
process transforms information in a continuous fashion and transmits it in a
steady stream of output, rather than engaging in discrete transformations and
transmitting intermittent quantized outputs. These distinctions must be
pursued with vigor because their treatment will determine if and when the
additive-factor method, or some other inferential framework, is most ap-
propriate for analyzing and interpreting reaction-time data. Consequently,
several investigators have begun more detailed chronometric research, taking
various approaches to address the serial-versus-parallel and discrete-versus-
continuous distinctions in human information processing.

3.5.1. Serial-versus-parallel distinction

With respect to the serial-versus-parallel distinction, chronometric research
during the 1980s has looked especially for evidence of parallel contingent
processing, in which recipient processes receive partial outputs from some
source processes and the recipient processes start before the source processes
finish. A representative example of such research appears in the work of Miller
(1982, 1983). His approach involves testing whether subjects may become
partially prepared for a forthcoming response by processing various dimen-
sions of a presented stimulus (cf. Rosenbaum, 1980). The results of this
investigation imply that under some (but not all) circumstances, stimulus
evaluation sends partial outputs to response preparation, and the preparation
process overlaps in time with the functionally prior evaluation process. These
implications, if valid, would support McClelland’s (1979) cascade model and
other related ones that assume contingent parallel processing (e.g., Eriksen &
Schultz, 1979; McClelland & Rumelhart, 1981; Turvey, 1973).

3.5.2. Discrete-versus-continuous distinction

Regardless of whether processes such as stimulus evaluation and response
preparation occur serially or in parallel, it still remains to be determined
whether they involve discrete or continuous transformation and transmission
of information. This fact is illustrated, for example, by differences between the
cascade model of McClelland (1979) and another account, the asynchronous
discrete-coding model, proposed by Miller (1982). Both of these models
assume parallel contingent processing, with the stimulus-evaluation process
transmitting partial information to the response-preparation process so that
preparation may begin before evaluation has finished. They differ, however,
regarding the format of the information transmitted. Under the cascade
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model, as mentioned already, partial information consists of continuous
increasing activation. The asynchronous discrete-coding model does not entail
such activation. Instead, outputs by its evaluation process consist of quantized,
temporally separate, information packets corresponding to stimulus values on
each of a few basic feature dimensions. Given possibilities like this, one must
treat the discrete-versus-continuous distinction in its own right, according it
equal status with the serial-versus-parallel distinction. '

Some representative examples of work on the discrete-versus-continuous
distinction appear in our own research. Here we outline two related ap-
proaches that we have taken to obtain a close look at the intermediate
processes and products of cognition and action. One approach deals with
whether response preparation involves discrete or continuous processes (Meyer,
Yantis, Osman, & Smith, 1984, 1985; cf. Yantis & Meyer, 1988). The other
approach deals with whether stimulus evaluation is discrete or continuous
(Meyer & Irwin, 1981; Meyer, Irwin, et al., 1988).

4. Discrete versus continuous response preparation

To pursue the discrete-versus-continuous distinction for response prepara-
tion, we have adopted a varied-priming procedure (Meyer et al., 1984, 1985).
For example, in one version of this procedure (Meyer et al., 1985; Experiment
1), the events were as follows: On each trial, an initial warning signal was first
displayed briefly (500 ms). Next a prime stimulus was presented for a variable
duration (from O to 700 ms). The prime stimulus consisted of either a printed
word such as TREE or a nonword such as MAFE, which were sampled
randomly from a large pool of letter strings. The subject did not respond
overtly to the prime stimulus, but had to evaluate it in preparation for
subsequent events. After the prime stimulus, there was a final brief (85 ms)
warning signal, which helped equalize the subject’s alertness regardless of how
long the priming interval lasted. Then we presented a test stimulus consisting
of either a right or left arrow. When the test stimulus appeared, the subject
had to respond by pressing a corresponding right or left index-finger key
quickly and accurately. We measured the subject’s reaction time from the
onset of the test stimulus until the response occurred. Response accuracy was
recorded as well.

Our varied-priming procedure incorporated a strong contingency between
the lexical status of the prime stimulus and the spatial orientation of the
subsequent test stimulus. When the prime stimulus was a word, we always

! For present purposes, we use the term “discrete” in referring to any set of internal states, levels,
and so forth that has a finite or countably infinite number of members. We do not necessarily
restrict it to sets that have only two possible members, for example, as in all-or-none states of
response preparation (cf. Miller, 1988).
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followed it with a right arrow that required a right-hand response. When the
prime stimulus was a nonword, we always followed it with a left arrow that
required a left-hand response. In principle, this contingency allowed the
subject to prepare his or her response in advance of the test stimulus,
depending on how long the priming interval was.

The design of the procedure included three different conditions that varied
the degree to which the subject’s responses were actually primed. In one of
these, the completely-primed condition, the prime stimulus had a relatively long
duration (700 ms). This was enough time for the subject to finish evaluating
the prime stimulus and fully prepare a response before the test stimulus
appeared. As a result, the responses in the completely-primed condition were
relatively fast. In another case, the unprimed condition, the subject did not
receive any information to prepare a response ahead of time. We achieved this
by proceeding directly from the initial warning signal to the final warning
signal without displaying the prime stimulus at all (0 ms priming interval). >
As a result, the responses to the test stimuli were relatively slow. Finally, there
was a partially-primed condition. Here an intermediate level of response
preparation was induced by presenting the prime stimulus for a medium
duration (around 200 ms), which yielded moderate reaction times. * From
quantitative comparisons of the reaction-time distributions obtained under the
unprimed, partially-primed, and completely-primed conditions, inferences can
be made about whether response preparation takes place in a discrete or
continuous fashion throughout the priming interval.

4.1. Rationale of varied priming

The rationale of our varied-priming procedure is illustrated more fully in
the three panels of fig. 2. This figure shows what representative distributions
of reaction times from the unprimed, partially-primed, and completely-primed
conditions should look like if response preparation involves a discrete all-or-
none process with only two preparatory states. For reasons mentioned already,
the unprimed condition has a distribution of relatively slow times, correspond-
ing to a state of no advance preparation (fig. 2, top panel). The completely-

2 An alternative way of implementing the unprimed condition is to display an uninformative
(neutral) prime stimulus such as “ XXXX" for some period of time between the initial and final
warning signals. This has the advantage that it allows one to assess the efficacy of the final
warning signal for maintaining subjects’ alertness regardiess of the length of the priming interval
(Meyer et al., 1985; cf. Yantis & Meyer, 1988).

The exact duration of the prime stimuli in the partially-primed condition was adjusted through a
staircase tracking algorithm that yielded a distribution of reaction times located midway
between those in the unprimed and completely-primed conditions. Given the flexibility of this
algorithm, which takes account of details in individual subjects’ performance, we have referred
elsewhere to the varied-priming procedure as the adaptive-priming procedure. For further details,
see Meyer et al. (1985).

w
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Fig. 2. Hypothetical reaction-time distributions predicted by a discrete all-or-none stage model of
response preparation. (The top, middle, and bottom panels show distributions associated with the
unprimed, partiaily-primed, and completely-primed conditions of the varied-priming procedure.
From “Temporal properties of human information processing: Tests of discrete versus continuous
models,” by D.E. Meyer, S. Yantis, A.M. Osman, & J.E.K. Smith (1985). Cognitive Psychology, 17,
445-518. Copyright 1985 by Academic Press. Reprinted with permission of authors and publisher.)

primed condition has a distribution of relatively fast times, corresponding to a
state of full preparation (fig. 2, bottom panel). However, the most important
case concerns the intermediate reaction-time distribution for the partially-
primed condition (fig. 2, middle panel).

Given a discrete all-or-none process of response preparation, the partially-
primed condition should exhibit a distribution such that part of it comes from
the completely-primed condition and part of it comes from the unprimed
condition. This is because if the preparation process is all-or-none, then on
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any particular trial in the partially-primed condition, a subject can be in only
one of two preparatory states, namely, unprepared or fully prepared (Meyer et
al., 1985). Which state actually obtains after a medium prime duration will
vary randomly from trial to trial, because fluctuations may occur in how long
the subject takes to change from the unprepared to the fully-prepared state. As
a result, the reaction times associated with partial priming should be a perfect
mixture of those found under the two extreme priming conditions (i.e.,
unprimed and completely primed). The effects of such mixing may be seen in
the relatively large variance of the partially-primed distribution and in the
extensive overlap of its tails with those of the unprimed and completely-primed
distributions. *

In contrast, a continuous process of response preparation would not yield
this sort of mixture. For example, consider fig. 3. Here we have shown what
reaction-time distributions in the unprimed, partially-primed, and completely-
primed conditions would be like under McClelland’s (1979) cascade model,
which assumes that response preparation involves a continuous growth of
activation rather than a discrete all-or-none transition between two extreme
preparatory states. The distribution in the partially-primed condition (fig. 3,
middle panel) is not a perfect mixture of those in the unprimed condition (fig.
3, top panel) and completely-primed condition (fig. 3, bottom panel). Instead,
its shape is similar to theirs, its tails do not overlap extensively with theirs, and
its variance is moderate. This is because if response preparation increases
continuously during the priming interval, then in the partially-primed condi-
tion, there should be a truly intermediate level of preparation with its own
unique pattern of facilitation (McClelland, 1979; Meyer et al., 1984, 1985).
The occurrence of partial priming would not stem merely from mixing the
unprepared and fully-prepared states on a stochastic basis. So by examining
the reaction-time distribution in the partially-primed condition and comparing
it with those in the unprimed and completely-primed conditions, we may reach
further conclusions about whether response preparation is a discrete or
continuous process.

4.2. Evidence of all-or-none preparation

Some results obtained with the varied-priming procedure appear in fig. 4.
These data come from a representative subject who participated during several
hundred trials of the task just described (Meyer et al., 1985, Experiment 1).

4 To be precise, let f,(?), fo(1), and f.(¢) represent probability-density functions of reaction
times in the unprimed, partially-primed, and completely-primed conditions, respectively. Also,
let 7 represent the probability that a subject enters the fully-prepared state under the
partially-primed condition, and let 1-= represent the probability that the subject remains in the
unprepared state. Then according to the discrete all-or-none model of response preparation,

Loy =nf()+A—m)f,(1).
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Fig. 3. Hypothetical reaction-time distributions predicted by a continuous cascade model of
response preparation. (The top, middle, and bottom panels show distributions associated with the
unprimed, partially-primed, and completely-primed conditions of the varied-priming procedure.
From “Temporal properties of human information processing: Tests of discrete versus continuous
models,” by D.E. Meyer, S. Yantis, A M. Osman, & J.E.K. Smith (1985). Cognitive Psychology, 17,
445-518. Copyright 1985 by Academic Press. Reprinted with permission of authors and publisher.)

The three panels of fig. 4 contain solid histograms of observed reaction times
for the unprimed, partially-primed, and completely-primed conditions, respec-
tively. As shown there, the relative frequency of fast responses increased as the
duration of the prime stimulus increased, reflecting a substantial priming
effect.

Next let us consider the dashed curves superimposed on each histogram of
fig. 4. These curves represent theoretical estimates of reaction-time distribu-
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Fig. 4. Distributions of reaction times that support a discrete all-or-none stage model of response
preparation. (The top, middle, and bottom panels show data for a representative subject in the
unprimed, partially-primed, and completely-primed conditions of the varied-priming procedure.
Solid histograms indicate relative frequencies of observed times, and dashed curves indicate
best-fitting frequency distributions based on the all-or none model. From “Temporal properties of
human information processing: Tests of discrete versus continuous models,” by D.E. Meyer, S.
Yantis, A.M. Osman, & J.E.K. Smith (1985). Cognitive Psychology, 17, 445-518. Copyright 1985
by Academic Press. Reprinted with permission of authors and publisher.)

tions that come closest to the data in terms of maximum likelihood and that
form a family in which the estimated distribution for the partially-primed
condition is a perfect mixture of the estimated distributions for the unprimed
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and completely-primed conditions. * If response preparation were a discrete
all-or-none process with only two preparatory states, namely, unprepared and
fully prepared, then the dashed lines would fit the histograms exactly except
for random statistical noise. Indeed, the fit is very good, reflecting a nearly
perfect mixture (x?(13) = 16.5; p > 0.05). The partially-primed condition (fig.
4, middle panel) yielded reaction times with the largest variance and tails that
extensively overlapped those from the other two conditions (fig. 4, top and
bottom panels). Similar results were obtained for a number of other subjects
as well (Meyer et al., 1985, Experiments 1 and 2). It therefore appears that
under a least some circumstances, response preparation may be an essentially
discrete all-or-none process, consistent with Sternberg’s (1969) serial stage
model.

4.3. Evidence of intermediate preparatory states

Of course, we do not mean to imply that response preparation is always a
discrete all-or-none process. The experiment in which we obtained evidence of
just an unprepared state and a fully-prepared state was relatively simple.
Subjects produced only two different responses there (i.e., keypresses with left
and right index fingers). Relationships between the test stimuli (left and right
arrows) and responses were highly compatible. Also, the prime stimuli (words
and nonwords) were completely informative about the required responses.
Once the subjects identified a word or nonword prime, they knew exactly
which keypress to make subsequently. However, under more complex cir-
cumstances that place greater demands on subjects’ processing capacity, the
results may be somewhat different.

For example, we have conducted another experiment with the varied-prim-
ing procedure to demonstrate the existence of intermediate preparatory states
(Meyer et al., 1985, Experiment 3). Rather than including just two pairs of test
stimuli and responses, this next experiment included four pairs. Each test
stimulus was an upward arrow presented at one of four different locations
demarcated by a horizontal array of underlined spaces on a display screen.
Each response was a key press made with either the index or middle finger of
the right or left hand. The responses were assigned to the test stimuli via a

Y
relatively complex mapping. In particular, the left-end arrow (——-—--) re-

T
quired a right middle-finger keypress; the left-middle arrow (- — — —) required

5> The estimates were derived through an iterative algorithm that maximizes goodness-of-fit in
terms of a quasi chi-square statistic for multinomial mixture distributions. Details regarding this
algorithm appear in Smith, Meyer, Yantis, and Osman (1982).
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1
a right index-finger keypress; the right-middle arrow (— — ~ -) required a left

index-finger keypress; and the right-end arrow (- - - ;) required a left
middle-finger keypress.

As in our previous experiments (e.g., Meyer et al., 1985, Experiment 1), the
test stimuli on some (but not all) trials were preceded by informative prime
stimuli that consisted of various words and nonwords. When the prime
stimulus was a word, it indicated that the subsequent test stimulus would
require a response with one of the right-hand fingers. A nonword prime
stimulus indicated that the subsequent test stimulus would require a response
with one of the left-hand fingers.

Three priming conditions were included here, analogous to the unprimed,
partially-primed, and completely-primed conditions of our previous experi-
ment (cf. Meyer et al., 1985, Experiment 1). Under the unprimed condition, no
informative primes occurred before the test stimuli, allowing subjects no
advance preparation for the subsequent responses. Under the partially-primed
condition, the informative primes (i.e., words and nonwords) occurred with a
medium duration (roughly 200 ms), which did not always permit the subject to
finish processing them completely but allowed an intermediate level of re-
sponse preparation to be achieved. Under the completely-primed condition,
the informative primes occurred with a long duration (700 ms), which practi-
cally always permitted subjects to finish processing them and to achieve a
relatively high level of response preparation. However, the completely-primed
condition did not allow as much preparation as in our previous study, because
the prime stimuli only cued which hand (i.e., right or left); not which
particular finger (i.e., index or middle), to use for making the response. We
suspected that the change in this condition, combined with the larger
stimulus-response ensemble and more complex mapping of test stimuli onto
responses, might yield somewhat different results than before. It seemed
possible, in particular, that rather than having just two discrete states (i.e., all
or none), the preparation process would pass through some additional inter-
mediate states, because of the increased demands made by the task on
subjects’ processing capacity and cognitive resources.

Some results consistent with the latter expectations appear in fig. 5. These
data come from responses made by a representative subject with the middle
finger of his right hand during several hundred trials involving the four
alternative stimulus-response pairs (Meyer et al., 1985, Experiment 3). Again
we have shown histograms of observed reaction times (solid bars) and best-fit-
ting theoretical distributions (dashed curves) for a discrete all-or-none model
of response preparation. Unlike before (cf. fig. 4), the model does not fit very
well here (x?(6) = 30.6; p < 0.001). The model’s failure can be seen by looking
at the reaction times for the partially-primed condition (fig. 5, middle panel).
In this case, the dashed curves do not closely match the solid histograms,
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Fig. 5. Distributions of reaction times from the varied-priming procedure with four stimulus-re-
sponse pairs and a complex stimulus-response mapping. (The top,middle, and bottom panels show
data obtained for right middle-finger responses by a representative subject in the unprimed,
partially-primed, and completely-primed conditions, respectively. Solid histograms indicate rela-
tive frequencies of observed times, and dashed curves indicate best-fitting frequency distributions
based on the discrete all-or-none stage model, which is rejected here. From “Temporal properties
of human information processing: Tests of discrete versus continuous models,” by D.E. Meyer, S.
Yantis, A.M. Osman, & J.E.K. Smith (1985). Cognitive Psychology, 17, 445-518. Copyright 1985
by Academic Press. Reprinted with permission of authors and publisher.)

indicating that the results do not correspond to an essentially perfect mixture
of reaction times from the unprimed and completely-primed conditions.
Instead, the medium-duration prime stimuli yielded reaction times that had
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only moderate variances and short tails compared with those from the other
priming conditions (fig. 5, top and bottom panels). ¢

We infer, therefore, that the number of states in response preparation may
depend on the size of the stimulus-response ensemble, the complexity of the
stimulus-response mapping, and the response effector being used. As ensemble
size and mapping complexity increase, there may be finer and finer gradations
among preparatory states, reflecting a diffusion caused by greater demands on
subjects’ processing capacity (Meyer et al., 1985). The varied-priming proce-
dure and analysis of reaction-time mixture distributions provide a way to
assess changes in the preparation process as a function of task demands. ’

5. Discrete versus continuous stimulus evaluation

With these conclusions in mind, we next describe another approach taken
in our laboratory to pursue the discrete-versus-continuous distinction (Meyer
& Irwin, 1981; Meyer, Irwin, et al., 1988). This approach is called the
speed-accuracy decomposition technique. It focuses more closely on the processes
of stimulus discrimination and evaluation.

5.1. Procedure for speed-accuracy decomposition

The experimental procedure for speed-accuracy decomposition involves two
types of test trials, regular and signal, that are interleaved together.

5.1.1. Regular trials

During the regular trials, the events are similar to those in a conventional
choice reaction-time procedure. Each regular trial starts with a warning signal
(e.g., visual fixation mark) followed by a positive or negative test stimulus
(e.g., word or nonword). Subjects must react to the test stimulus quickly but
accurately, making either a positive or negative response (e.g., right or left
keypress). We instruct subjects to take just enough time in evaluating the test
stimulus to ensure that the response is almost always correct. Reaction time is
measured from the onset of the test stimulus until the response occurs, and

response accuracy is also recorded.

6 In this experiment, similar results were obtained for middie-finger responses made by other

subjects (Meyer et al., 1985, Experiment 3). However, index-finger responses followed the same

pattern as found during our previous study with only two test stimuli and responses, in which
response preparation was all-or-none (fig. 4). A possible explanation for the dependence of the

results on finger type appears in Meyer et al. (1985).

7 Some additional applications of the varied-priming procedure and mixture-distribution analysis
appear in Yantis and Meyer (1985, 1988). For example, we have used our approach to
demonstrate that spreading activation between concepts in semantic and episodic memory is not
a discrete all-or-none process, but instead has quasi-continuous properties.
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5.1.2. Signal trials

Like the regular trials, the signal trials start with a warning signal followed
by a positive or negative test stimulus. The subjects are instructed to begin
processing the test stimulus in the same way as on the regular trials, aiming
toward a correct response that has a reasonably short latency. They may react
as soon as they have determined the correct response. However, at some
moment after the onset of the test stimulus, a response signal (e.g., auditory
tone) is presented. It the subjects have not reacted to the test stimulus yet,
then upon detecting the response signal, they must immediately produce their
best guess about what the correct response is, regardless of whether or not they
have finished evaluating the test stimulus. We vary the lag between the onset
of the test stimulus and response signal, allowing the subjects more or less
time before being interrupted by the response signal. Reaction time and
response accuracy are measured as a function of the signal lag and the identity
of the test stimulus, as in other response-signal procedures (e.g., Corbett &
Wickelgren, 1978; Reed, 1976; Schouten & Bekker, 1967).

Another important feature of the signal trials is that we mix them randomly
with the regular trials. At the start of each trial, the subjects cannot tell
whether or not a response signal will be presented subsequently. So they must
approach each test stimulus with a consistent mental set, trying to respond as
soon as they either finish their stimulus evaluation or detect the response
signal. This lets us directly compare results from the different trial types,
which in combination provide more power for drawing inferences than does
either a conventional reaction-time or speed-accuracy tradeoff experiment
alone. Given how speed-accuracy decomposition works, we refer to the combi-
nation of regular and signal trials as a titrated reaction-time procedure (Meyer,
Irwin, et al., 1988).

5.2. Theoretical objective

5.2.1. Information-accumulation functions

The objective of the titrated reaction-time procedure and speed-accuracy
decomposition technique can be understood more fully in terms of fig. 6. We
assume that when a test stimulus is presented on a regular or signal trial,
subjects initiate a process of stimulus evaluation that, if not interrupted,
typically yields a correct response. The evaluation process presumably involves
accumulating information about what the response should be. Fig. 6 illustrates
various forms that this accumulation might have during a representative trial.
Using some algebraic equations outlined later, we analyze the information
accumulation as a function of time, determining whether it entails discrete or
continuous outputs.

For example, consider the three panels of fig. 6. One possibility here is that
stimulus evaluation entails a discrete all-or-none accumulation of information
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Fig. 6. Alternative information-accumulation functions that may characterize the process of
stimulus evaluation. (The top, middle, and bottom panels illustrate discrete all-or-none, discrete
multistate, and continuous outputs of accumulated information, respectively. The dotted horizon-
tal lines are information thresholds that, when crossed, trigger the production of overt responses.
From “The dynamics of cognition and action: Mental processes inferred from speed-accuracy
decomposition,” by D.E. Meyer, D.E. Irwin, AM. Osman, & J. Kounios (1988). Psychological
Review, 95, 183-237. Copyright 1988 by the American Psychological Association. Reprinted with
permission of authors and publisher.)

over time, exhibiting a function with a single step from a low to a relatively
high information level (fig. 6, top panel). Under these circumstances, a
response would be initiated when the step function crosses the dotted high
threshold. A second possibility is that stimulus evaluation entails discrete
information accumulation, but that the evaluation process outputs one or
more intermediate quanta of partial information before the threshold is
crossed, exhibiting a function with multiple steps (fig. 6, middle panel). This
multistep function and the above one having a single (all-or-none) step would
be consistent with various discrete stage models of information processing
(e.g., Miller, 1982; Sternberg, 1969). In contrast, a third possibility is that the
evaluation process might produce a steadily increasing flow of partial informa-
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tion until the response threshold is crossed (fig. 6, bottom panel). This would
be consistent with McClelland’s (1979) cascade model and other deterministic
continuous models (e.g., Eriksen & Schultz, 1979; McClelland & Rumelhart,
1981; Turvey, 1973; Wickelgren, 1977). Our goal is to discover which temporal
patterns of accumulated partial information actually occur during the perfor-
mance of various cognitive tasks.

5.2.2. Limitations of speed-accuracy tradeoff curves

Why are both regular and signal trials needed in order to test these
alternative possibilities? If we included only signal trials, we could certainly
plot observed response accuracy as a function of signal lag, obtaining a
speed-accuracy tradeoff curve of the sort studied by previous investigators
(e.g., Corbett & Wicklegren, 1978; Fitts, 1966; Pachella & Pew, 1968; Reed,
1976; Schouten & Bekker, 1967). This might provide some insight into how the
process of stimulus evaluation accumulates partial information over time.

Unfortunately, there are some serious limitations to conclusions that can be
drawn from standard speed-accuracy tradeoff curves. These curves may con-
found performance achieved on the basis of various information levels (Meyer
& Irwin, 1981; Meyer, Irwin, et al., 1988; Schmitt & Scheirer, 1977; Wickelgren,
1977). For example, a smooth tradeoff curve that seems superficially con-
sistent with continuous accumulation of partial information (McClelland,
1979; Wickelgren, 1977) could result from an all-or-none output of informa-
tion by a discrete two-state evaluation process. In particular, suppose that on
each trial there is a single sharp transition from a very low level to a high level
of accumulated information, as the top panel of fig. 6 illustrates. Suppose also
that the time at which this transition takes place varies randomly from trial to
trial. Then when response accuracy is averaged across trials, a smooth tradeoff
curve would result because of smearing, even though the underlying evaluation
process is really discrete. So standard speed-accuracy tradeoff curves can
obscure the true manner in which partial information is accumulated during
rapid performance.

Speed-accuracy decomposition is designed to help deal with this problem.
By analyzing data from the regular and signal trials in combination, we can
measure how much partial information has been accumulated at various
moments after the onset of a test stimulus, without the degree of confounding
that may contaminate standard speed-accuracy tradeoff curves. The regular
trials let us remove the contribution of above-threshold information to sub-
jects’ responses on the signal trials, thereby revealing the residual contribu-
tions of below-threshold partial information as a function of time. Such
analyses would not be possible with data from either signal trials or regular
trials alone, but taken together, the two trial types of the titrated reaction
-time procedure provide deeper insights into the intermediate products of
stimulus evaluation (Meyer, Irwin, et al., 1988).
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5.3. Parallel sophisticated-guessing model

Some more details regarding the speed-accuracy decomposition technique
appear in fig. 7, which shows a parallel sophisticated-guessing modei for
analyzing results from the titrated reaction-time procedure (Meyer & Irwin,
1981; Meyer, Irwin, et al., 1988). According to this model, a subject begins
each regular and signal trial by initiating “normal” processes of stimulus
evaluation at the onset of the test stimulus. The normal processes are assumed
to be programmed to accumulate sufficient information for producing a
typically correct response. They have an underlying distribution of completion
times that may depend on the nature of the test stimulus, and when comple-
tion is reached, an overt response occurs.

In addition, the model incorporates a set of guessing processes. The
guessing processes take place on the signal trials but not the regular trials.
They supposedly begin at the onset of each response signal. Their function is
to generate a response immediately after the signal is detected, relying on
whatever partial information has been accumulated by the normal processes

COMPLETE
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COMPLETION TIMES

“"NORMAL"
PROCESSES

TEST STIMULUS
PRESENTED HERE

l PARTIAL INFORMATION

AND RESPONSE BIAS
GUESSING

PROCESSES
COMPLETION TIMES

RESPONSE SIGNAL
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Fig. 7. Parallel sophisticated-guessing model used for analyzing results from regular and signal
trials in the speed-accuracy decomposition technique. (From “The dynamics of cognition and
action: Mental processes inferred from speed-accuracy decomposition,” by D.E. Meyer, D.E.
Irwin, A.M. Osman, & J. Kounios (1988). Psychological Review, 95, 183-237. Copyright 1988 by
the American Psychological Association. Reprinted with permission of authors and publisher.)
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up to then. We assume that the guessing processes race with the normal
processes and that the winner of the race determines the subject’s overt
response. This assumption parallels ones made in several previous race models
of information processing (e.g., Kornblum, 1973; Logan & Cowan, 1984;
Ollman & Billington, 1972; Osman, Kornblum, & Meyer, 1986). The accuracy
of the responses produced by the guessing processes is called the guessing
accuracy. The time at which the guessing processes finish relative to the onset
of a test stimulus is called the guessing-completion time.® We treat the
guessing-completion times and the completion times of the normal processes
as independent random variables (cf. Kornblum, 1973; Ollman & Billington,
1972).

Given reaction times and accuracies of overt responses from the regular and
signal trials, we analyze them in terms of the parallel sophisticated-guessing
model. The results can be used to test the model’s assumptions about the
nature of the race between the normal and guessing processes. On the basis of
such tests, it has turned out that these assumptions are reasonably valid
(Meyer, Irwin, et al., 1988). More important, the parallel sophisticated-guess-
ing model provides a measure of how much partial information has been
accumulated by the normal processes of stimulus evaluation at each moment
before they have reached completion. This measurement involves estimating
the accuracy and completion times of the guessing processes along with those
of the normal processes.

5.3.1. Guessing-completion times
The guessing-completion times are estimated through the following equa-
tion:

P(h, <€) - LEEG-AE=S), a)

Here ¢, is a random variable that represents the completion times of the
guessing processes on the signal trials, ¢, is a random variable that represents
the observed reaction times on the signal trials, ¢, is a random variable that
represents the observed reaction times on the regular trials, and C is an
arbitrary non-negative constant. We can determine P(z, < C) and P(s, < C)

® For reasons discussed elsewhere (Meyer, Irwin, Osman, & Kounios, 1988), the guessing-comple-
tion times are not measured relative to the onset of the response signal. This is because we want
to plot the guessing accuracy as a function of how much time the normal processes have to
accumulate partial information before being beaten by the completion of the guessing processes.
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directly from the signal-trial and regular-trial reaction times for any value of
C, so we can also determine P(z,, < C), using Equation 1. This gives us an
estimated cumulative distribution function (i.e., F,(C)=P(¢,, < C) for the
guessing-completion times. °

5.3.2. Guessing accuracy

The accuracy of the guessing processes, which reflects the amount of partial
information available to them from the unfinished normal processes at the
moment when the subject detects the response signal, are estimated through
the following equation:

P,(correct) — [P(tn < 1,)P,(correct|t, < tgs)]
1—-P(t,<1y)

(2)

P, (correct|ry, < 1,) =

Here P,(correct|z,, < 1,) represents the guessing accuracy, that is, the probabil-
ity that the guessing processes produce a correct response when their comple-
tion time (%) is less than the completion time (¢,) of the normal processes.
Using Equation 2, we calculate the guessing accuracy in terms of three other
estimable quantities: Py(correct), P (correct|s, <1,,), and P(¢, <1,). P(cor-
rect) represents the probability of correct responses on the signal trials; it is
estimated directly from the observed signal-trial response accuracy.
P,(correct|z, < t,,) represents the probability of correct responses by the
normal processes when their completion times are less than or equal to those
of the guessing processes; it is estimated directly from a combination of the
observed regular-trial response accuracy, regular-trial reaction times, and
derived distribution of guessing-completion times (Equation 1). P(¢, <)
represents the probability that the normal processes win the race with the
guessing processes; it is estimated from a combination of the observed
regular-trial reaction times and derived guessing-completion times. The regular
trials provide pure measures of both the completion times and the accuracy of
the completed normal processes. This is possible because, under the parallel

¥ The derivation of Equation 1 is straightforward (Meyer, Irwin, Osman, & Kounios, 1988). When
the normal and guessing processes race with each other, the reaction time on a signal trial (z,)
will exceed C if and only if the completion time of the guessing processes (r,) and the
completion time of the normal processes (¢,) both exceed C. Under the parallel sophisticated-
guessing model, these completion times are assumed to be independent random variables, so
P(t;> C)=P(1,> C and t,;> C)=P(t,> C)P(¢,, > C). In turn, this equation implies that
[1-P(, < Ol =[1-P(z, < O)J[1 - P(¢ys < C)). The completion times (z,) of the normal
processes are directly estimable from the reaction times (¢,) on the regular trials. Substituting ¢,
for ¢, in the latter equation and rearranging terms then yields Equation 1.
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sophisticated-guessing model (fig. 7), only the normal processes mediate
regular-trial performance. '°

By plotting the estimated accuracy of the guessing processes versus the
guessing-completion times, we may discriminate among different patterns of
accumulated partial information such as those illustrated in fig. 6 (Meyer,
Irwin, et al., 1988). For example, suppose that the guessing accuracy, which
reflects the amount of available below-threshold partial information, remains
at a base (chance) level as the lag of the response signal and the guessing-com-
pletion time increases. Then this would suggest that the normal processes of
stimulus evaluation entail an all-or-none accumulation of information over
time (fig. 6, top panel), consistent with a basic discrete stage model (e.g.,
Sternberg, 1969). If, instead, the guessing accuracy increases rapidly and
reaches a stable intermediate plateau after some extended period of chance
guessing, then this would suggest an information-accumulation function that
has at least one intermediate upward step from its base level (fig. 6, middle
panel), consistent with discrete models whose processes produce partial quan-
tized outputs (e.g., Miller, 1982; cf. Ratcliff, 1988). Steady growth of guessing
accuracy over time would, by contrast, indicate gradual partial-information
accumulation, as expected from some continuous models (e.g., McClelland,
1979).

5.4. Applications of speed-accuracy decomposition

To illustrate the speed-accuracy decomposition technique, we will briefly
summarize two experiments in which it has been used for measuring the
accumulation of partial information as a function of time during various
lexical-decision tasks (Meyer, Irwin, et al., 1988; cf. Meyer & Schvaneveldt,
1971, 1976; Meyer, Schvaneveldt, & Ruddy, 1975). The test stimuli for both
experiments were words and nonwords. In one experiment (Meyer, Irwin, et
al., 1988, Experiment 5), single words like MAID served as positive stimuli,
and single nonwords like BROP served as negative stimuli. Subjects had to
determine whether each letter string was a word or nonword and make a
corresponding response to indicate their yes-no lexical decision. Six signal lags
(viz., 100, 135, 170, 205, 240, and 275 ms on the average) were used during the

10 The derivation of Equation 2, like the derivation of Equation 1, is straightforward (Meyer,
Irwin, Osman, & Kounios, 1988). When the normal and guessing processes race with each
other, the observed response on a signal trial will be correct if and only if one of two mutually
exclusive outcomes occurs: (a) the normal processes win the race and produce a correct
response, or (b) the guessing processes win the race and produce a correct response. The
probability of the first outcome is simply P(¢, < 1,)P (cotrect|t,, < £,,). The probability of the
second outcome is [1—P(¢,, < t,,)]P,(correct |z, < 1,,). So the probability of a correct signal-trial
response, P (correct), can be expressed as a sum of the probabilities of these two outcomes.
Rearranging the terms of this latter expression yields Equation 2.
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signal trials of this experiment. In a second experiment (Meyer, Irwin, et al.,
1988, Experiment 3), words and nonwords were paired with each other to form
the positive and negative stimuli. The positive stimuli consisted of word pairs
like MAID-ROCK and nonword pairs like BROP-MISK, whereas the negative
stimuli consisted of pairs with one word and one nonword, such as COAT-
WASK or LURT-BARN. This required subjects to decide whether the two
letter strings of each pair had the same or different lexical status and then
make a corresponding response. Five signal lags (viz., 150, 425, 475, 525, and
575 ms on the average) were used during the signal trials of this experiment.

5.4.1. Results for yes-no lexical decisions

Some results of the experiment involving yes-no lexical decisions about
single letter strings appear in fig. 8 The top panel of the figure shows
estimated cumulative distribution functions of reaction times (i.e., F,(C) = P(¢,
< Q)) for the positive (word) and negative (nonword) stimuli on regular trials.
They represent the completion times of the normal processes under the
parallel sophisticated-guessing model. In contrast, the middle panel shows
corresponding cumulative distribution functions of reaction times (F(C) =
P(z, < C)) obtained at each of the six signal lags on signal trials, representing
completion times associated with the winners of the race between the normal
and guessing processes induced by the response signal. At the bottom are
estimated cumulative distribution functions of guessing-completion times
(F(C) = P(t,, < C)) for each stimulus type and signal lag. These were derived
by applying Equation 1 to the results in the top and middle panels, extracting
the guessing-completion time distributions from the signal-trial reaction times
by partialling out the contributions made by rapidly completed normal
processes on signal trials. '!

As fig. 8 indicates, the reaction times on regular trials were relatively long
(top panel). Presenting the response signals on signal trials reduced reaction
times significantly, and the reduction grew systematically as the signal lag
decreased, presumably because of contributions from the guessing processes
induced by the response signals (middle panel). The forms of the estimated
guessing-completion time distributions (bottom panel) suggest that decreasing
the signal lag shifted these distributions toward the lower end of the time scale
but did not otherwise alter their shapes a great deal. > This outcome supports

1 Each distribution in the top and middle panels of fig. 8 was estimated by Vincentizing the
specified reaction-time data across individual subjects, including times from both correct and
incorrect responses. The reaction times were Vincentized because this provides a way of
averaging data while preserving the shapes of individual distribution functions and obtaining
unbiased estimates of mean reaction-time quantiles (Thomas & Ross, 1980).

As mentioned earlier, the six signal lags associated with the data in fig. 8 averaged about 100,
135, 170, 205, 240, and 275 ms, respectively. Thus, from the figure, it may be seen that
regardless of signal lag, the guessing processes were typically completed within about 200 ms
after the onset of a response signal.
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Fig. 8. Vincentized cumulative distribution functions for each stimulus type and signal lag in the
experiment with yes-no lexical decisions. (The top, middle, and bottom panels illustrate respec-
tively reaction times on regular trials, reaction times on signal trials, and guessing-completion
times derived through Equation 1 of the parallel sophisticated-guessing model. The symbols W
and N denote data from word and nonword stimuli, respectively. The symbols s, through sg
indicate which response signals were used to obtain the data, in order of ascending signal lag.
From “The dynamics of cognition and action: Mental processes inferred from speed-accuracy
decomposition,” by D.E. Meyer, D.E. Irwin, AM. Osman, & J. Kounios (1988). Psychological
Review, 95, 183-237. Copyright 1988 by the American Psychological Association. Reprinted with
permission of authors and publisher.)

the assumptions of the parallel sophisticated-guessing model (Meyer, Irwin, et
al.,, 1988) and provides a basis for using the guessing-completion times in
estimating the accuracy of the guessing processes.
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continuous accumulation of partial information during stimulus evaluation. From “The dynamics
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Meyer, D.E. Irwin, AM. Osman, & J. Kounios (1988). Psychological Review, 95, 183-237.
Copyright 1988 by the American Psychological Association. Reprinted with permission of authors
and publisher.)

Some results regarding the accuracy of the guessing processes, which we
estimated by applying Equation 2 to the response accuracies and reaction
times on the regular and signal trials, appear in fig. 9. '* Here we have plotted
the estimated guessing accuracy (solid points) versus the mean guessing-com-
pletion time for each of the six response-signal lags. The guessing accuracy
reflects how much partial information was accumulated by the normal
processes of stimulus evaluation when they did not finish before the response
signal was detected and the guessing processes were completed.

3 Error rates averaged about 5% on the regular trials and, not surprisingly, increased in a
monotonic fashion on signal trials as the lag of the response signal decreased.
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As fig. 9 shows, the guessing accuracy increased steadily over time. After
the longest guessing-completion time, which corresponds to the longest signal
lag, the guessing accuracy was nearly 85%. It approached the level achieved by
the completed normal processes, which produced approximately 95% correct
responses on the regular trials (fig. 9, dotted horizontal line). There was no
evidence of any intermediate plateau in the accuracy function. Our findings
therefore offer evidence against the hypothesis that stimulus evaluation during
yes-no lexical decisions involves a discrete accumulation of information with
only one or two sharp transitions (cf. fig. 6, top and middle panels). Instead, it
appears that partial information accumulated in a gradual fashion, consistent
with assumptions embodied in McClelland’s (1979) cascade model and other
deterministic continuous models. '

However, the present results come from just one case, namely, that in which
test stimuli were single letter strings. A different pattern of accumulated
partial information could emerge under other circumstances. Indeed, this is
what happened in our experiment with same-different lexical decisions about
pairs of words and nonwords (Meyer, Irwin, et al., 1988, Experiment 3).

5.4.2. Results for same-different lexical decisions

Some results regarding the same-different lexical decisions appear in fig. 10.
This figure shows estimated cumulative distribution functions of regular-trial
reaction times (top panel), signal-trial reaction times (middle panel), and
guessing-completion times (bottom panel) for each stimulus type and signal
lag. We obtained these estimates in the same way as for our previous
experiment (cf. fig. 8). There were marked stimulus-type effects on regular
trials and signal-lag effects on signal trials. When Equation 1 of the parallel
sophisticated-guessing model was applied to the regular-trial and signal-trial
reaction times, it yielded relatively well-behaved distributions of guessing-com-
pletion times. Consistent with the model’s assumptions, the mean
guessing-completion times decreased as the signal lag decreased, while the
shapes of their distributions were otherwise reasonably invariant as a function
of stimulus type and signal lag.

Fig. 11 shows some corresponding estimates of guessing accuracy derived
through Equation 2 of the parallel sophisticated-guessing model based on
observed signal-trial and regular-trial accuracies. We have plotted the accuracy
of the guessing processes as a function of the guessing-completion times after
the five response-signal lags used here. The overall pattern is rather different

14" Another case in which stimulus evaluation may produce a continuous growth of activation over
time has been reported by Kounios, Osman, and Meyer (1987). Using speed-accuracy decom-
position to analyze results from a sentence-verification task, we found that the accuracy of
guessing processes increased steadily as response-signal lag and guessing-completion times
increased, just as in our experiment with yes-no lexical decisions (fig. 9).
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Fig. 10. Vincentized cumulative distribution functions for each stimulus type and signal lag in the
experiment with same-different lexical decisions. (The top, middle, and bottom panels illustrate
respectively reaction times on regular trials, reaction times on signal trials, and guessing-comple-
tion times derived through Equation 1 of the parallel sophisticated-guessing model. The symbols
WW, NN, WN, and NW denote data from word-word, nonword-nonword, word-nonword, and
nonword-word stimuli, respectively. The symbols s; through ss indicate which response signals
were used to obtain the data, in order of ascending signal lag. From “The dynamics of cognition
and action: Mental processes inferred from speed-accuracy decomposition,” by D.E. Meyer, D.E.
Irwin, A.M. Osman, & J. Kounios (1988). Psychological Review, 95, 183-237. Copyright 1988 by
the American Psychological Association. Reprinted with permission of authors and publisher.)

than before (cf. Fig. 9). Guessing accuracy did not increase steadily as the
signal lag and guessing-completion time increased. Instead, it remained at a
virtually chance level for an extended period, until the guessing-completion
time nearly equalled the minimum reaction time on regular trials (see fig. 11,
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Fig. 11. Mean guessing accuracy (solid points) versus mean guessing-completion times for the five
response-signal lags in the experiment with same-different lexical decisions. (The horizontal dotted
line indicates the level of response accuracy on regular trials. The marker on the horizontal axis
indicates the minimum regular-trial reaction time obtained with word-word stimuli, which reflect
the completion time of the fastest normal processes. The dashed step function corresponds to the
intermediate output of a hypothetical three-state discrete process of stimulus evaluation, as shown
previously in the middle panel of fig. 6. From “The dynamics of cognition and action: Mental
processes inferred from speed-accuracy decomposition,” by D.E. Meyer, D.E. Irwin, A.M. Osman,
& J. Kounios (1988). Psychological Review, 95, 183-237. Copyright 1988 by the American
Psychological Association. Reprinted with permission of authors and publisher.)

lowest filled circle vs. vertical arrow). > Then a flat plateau in the accuracy
function emerged soon thereafter (i.e., between 400 and 600 ms after the onset
of the test stimuli), as indicated by the dashed step function.

This pattern may have come from a discrete process of stimulus evaluation
that produces at least one intermediate quantum of partial information just

15 The mean guessing-completion time for the response signal that had the shortest lag differed on
the order of just 50 ms or so from the minimum regular-trial reaction time. Yet at that lag, the
guessing accuracy was still only 52.9%, even though the fastest normal processes (i.e., those
associated with the minimum reaction times on regular trials) were highly accurate.
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before being completed (fig 6, middle panel). It appears that the information
was truly partial. The plateau in guessing accuracy fell at about 68%, substan-
tially below the estimated accuracy of the completed normal processes, which
yielded around 93% correct responses on the regular trials (fig. 11, dotted
horizontal line). Our findings for same-different lexical decisions are con-
sistent with a discrete stage model of the sort assumed under Sternberg’s
(1969) additive-factor method. Unlike yes-no lexical decisions about single
letter strings, the same-different decisions do not suggest that activation grew
in a monotonic deterministic fashion to the level set by normal evaluation
processes for initiating correct responses on regular trials (e.g., as in a cascade
model, McClelland, 1979; cf. Ratcliff, 1988). 16

Several factors could explain why a discrete process of stimulus evaluation
perhaps occurred in this latter case (Meyer, Irwin, et al., 1988). Subjects had to
compare the lexical status of paired words and nonwords. The comparison
process was biased toward producing a binary output; two items either had
the same lexical status or they did not. Also, lexical status was itself binary; a
string of letters was either a word or not. This heavy emphasis on dealing with
binary variables may have induced the process of stimulus evaluation to enter
a discrete rather than continuous mode of performance. The existence of
different performance modes and their variation with task demands are
revealed by our speed-accuracy decomposition technique. For more detail
regarding these conclusions and their justification, see Meyer, Irwin, et al,,
(1988).

6. Current status and future prospects

In summary, the current status of mental chronometry can be characterized
by considering how its family tree has grown over the years (fig. 1). Emerging
from the original work of Helmholtz (1850,/1853), the tree’s right branches
have spread through ideas stimulated by Donders’ (1868 /1969) subtraction
method and the discrete stage model on which it rests. The left branches of the
tree have taken a complementary direction, following Woodworth’s (1899)
development of speed-accuracy tradeoff curves and notions about stochastic
variability in human performance. This growth has led ultimately to concern
over the serial-versus-parallel and discrete-versus-continuous distinctions,
which differentiate alternative models of information processing and guide a

16 There are some continuous models for which the data from the same-different lexical decisions
seem more consistent. Ratcliff (1988) has shown that under certain circumstances, a stochastic
diffusion model involving a random drift of response strength can yield an apparent plateau in
guessing accuracy after intermediate signal lags. Other aspects of our results may, however, cast
doubt on the latter alternative (Meyer, Irwin, Osman, & Kounios, 1988).
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quest for more powerful chronometric methodology (Meyer, Irwin, et al.,
1988; Miller, 1988). Although we have not included our own research as part
of the tree diagram, one may view it as a natural off-shoot of past advances.
To be specific, the speed-accuracy decomposition technique embodies a hybrid
combination of procedures associated with the tree’s right and left branches,
perpetuating the traditions of both Donders (1868 /1969) and Woodworth
(1899). As such, it is intended to address certain basic issues related to the
seminal research of these classical investigators.

Of course, many questions about the dynamics of cognition and action still
remain. The paradigm of mental chronometry has not yet proven sufficient to
isolate and analyze all of the important parts of the human information-
processing system. One might thus wonder what can be done henceforth to
augment the paradigm and to ensure its continued fertility.

This brings us at last to the proposed marriage between mental chronome-
try and cognitive psychophysiology (fig. 1, tree top). As mentioned in the
introduction to our survey of the chronometric paradigm, some investigators
have expressed considerable enthusiasm about supplementing reaction-time
and speed-accuracy tradeoff procedures with batteries of psychophysiological
indicators (ERPs, EMG recordings, etc.). The wave of enthusiasm has risen
partly in response to obvious weaknesses in the chronometric paradigm.
Because standard behavioral measures obtained through mental chronometry
represent the total duration and final output of many processing stages in
combination, they do not offer an especially close look at underlying compo-
nent processes. However, cognitive psychophysiology can perhaps help over-
come this limitation by examining these components more directly.

An eloquent expression of such possibilities has appeared in recent articles
by Coles, Gratton, and their colleagues, who have noted:

The task of describing the information processing system would be consid-

erably easier if we had measures of the activity of particular elements of the

system, as well as measures of its output. This is where psychophysiology
may help. If psychophysiological measures are sensitive to particular infor-
mation processing activities, then we should be able to use them to
understand how these processes interact to produce the behavioural output

(Coles & Gratton, 1986, p. 409).

In particular, the (psychophysiological) measures can provide information

about the interactions between processes associated with stimulus evalua-

tion and processes that are required for the actual execution of responses

(Coles et al., 1985, p. 529).

The latter sentiments are not entirely new. Their heritage dates back to the
time of Helmholtz (1850,/1853), who introduced the simple reaction-time
procedure to supplement his physiological experiments on the rate of neural
conduction. It remains, nevertheless, a vibrant hope that cognitive psychophys-
iology may significantly augment modern mental chronometry and thereby
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yield deeper insights into the processes and products studied previously
through the chronometric paradigm.

It is likewise important to recognize that the marriage between cognitive
psychophysiology and mental chronometry need not be an asymmetric
partnership wherein the psychophysiological approach bears most of the
burden for subsequent advances. The chronometric paradigm brings a rich set
of assets to this marriage, from which cognitive psychophysiologists can profit
substantially. The assets include: (a) a set of versatile procedures for collecting
experimental data, (b) many basic facts about the speed and accuracy of
human performance in various cognitive tasks, (c) precise alternative models
for characterizing the representation, transformation, and transmission of
information through the information-processing system, (d) analytical tech-
niques to help evaluate data and test models, (e) significant questions and
issues to guide future research, (f) fundamental lessons, learned the hard way,
about the vicissitudes of research on information-processing dynamics. By
taking each of these assets into account, the psychophysiological approach
may evolve more fruitful applications of its methodology and more meaningful
interpretations of its measures (Chase, McCarthy, Squires, & Schvaneveldt,
1984).

To illustrate what prospects lie ahead, the following sections discuss and
evaluate advances made so far through the marriage between mental chronom-
etry and cognitive psychophysiology. We will briefly outline the basics of the
psychophysiological approach. Next we review interesting results from some
representative studies that have taken this approach to expand on several
facets of the chronometric paradigm. Then we assess the success of the overall
endeavor as it now stands, summarizing its accomplishments and noting some
dangerous pitfalls that could impede its further progress.

7. ERPs and information processing

Our discussion here concentrates primarily on psychophysiological research
involving event-related brain potentials (ERPs), which are transient voltage
fluctuations generated in neural tissue immediately before or after the occur-
rence of stimulus events. In this research, cognitive psychophysiologists have
recorded ERPs from subjects’ scalps during the performance of various
experimental tasks similar to those used as part of the chronometric paradigm
(e.g., Coles, Donchin, & Porges, 1986; Gaillard & Ritter, 1983; Hillyard &
Kutas, 1983). The time-locked electrical activity evoked in the brain by
presented stimuli has revealed systematic components of the ERP. These
components may be measured in terms of peak-to-trough or base-to-peak
deflections of the ERP signal after stimulus onset, thereby tapping related
phases of information processing.
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7.1. Classification of ERP components

There are two general classes of ERP components; exogenous and endoge-
nous (Hillyard & Kutas, 1983). The exogenous components occur within 100
ms or so after the onset of a stimulus. They may vary with physical parameters
of the stimulus, but are essentially obligatory and depend little, if at all, on
cognitive demands of the subjects’ task. Their properties are believed to reflect
relatively peripheral sensory mechanisms. In contrast, the endogenous compo-
nents occur 100 ms or more after stimulus onset. They typically emerge when
the subjects’ task entails certain central processes associated with the ERP.
Their properties are believed to reflect the processes of perception, attention,
memory retrieval, decision, response preparation, and so forth. For present
purposes, it is the endogenous components that will concern us most.

Cognitive psychophysiologists have characterized the endogenous compo-
nents of the ERP more precisely on the basis of several defining criteria: (a)
positive or negative polarity, (b) modal latency from the moment of stimulus
onset to the moment at which the component’s peak occurs, (c) morphology of
the component’s waveform, (d) spatial distribution, the component’s relative
amplitude at different recording sites on the scalp, (e) pattern of sensitivity to
various experimental factors, (f) underlying source, that is, the neural genera-
tor(s) from which the component emanates. With such criteria as a frame of
reference, several endogenous ERP components have been identified, includ-
ing N200, P300, N400, and the RP (readiness potential). Some of these
components appear directly in the overall waveform of the ERP, whereas
others (e.g., N, and Nd) emerge when one waveform is subtracted from
another (Hillyard & Kutas, 1983). For example, the P300 component repre-
sents a positive voltage deflection that, in generic experiments, peaks at a
modal time around 300 ms after stimulus onset. It tends to have greatest
amplitude at scalp sites located near the parietal regions of the brain, and is
sensitive to factors associated with variations in subjects’ expectancies (e.g.,
stimulus probability; Duncan-Johnson & Donchin, 1982). 7

Because of background noise in the brain’s on-going electrical activity,
detailed analyses of the endogenous ERP components require signal-processing
and pattern-recognition techniques (Coles, Gratton, Kramer, & Miller, 1986).
One may filter the ERP digitally and /or average it across trials to attenuate

7 There is still some residual ambiguity about whether certain ERP components belong to the
exogenous or endogenous class. This ambiguity applies, for example, to the N100 component,
which some authors (e.g., Renault, 1983) have treated as exogenous but others (e.g., Donchin,
McCarthy, Kutas, & Ritter, 1983) have treated as endogenous. The N100 component may
exhibit exogenous properties but appear, in part, to be endogenous (i.e., sensitive to cognitive
task demands) because another endogenous component, the Nd wave, which depends on
subjects’ attention, overlaps with it (Hansen & Hillyard, 1980; Hillyard & Kutas, 1983;
Naitidnen & Michie, 1979).
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contributions of the noise. Techniques such as linear discriminant analysis
(Donchin, 1969), template matching through cross correlation (Kutas et al,,
1977), and simple peak picking provide possible ways to estimate parameters
of particular components. In applying these techniques, ancillary assumptions
must of course be made. For example, parameter estimation in terms of
discriminant analysis assumes that each underlying component’s morphology
and temporal locus are invariant across trials.

7.2. Inference rules

After extracting the endogenous components of the ERP and estimating
their parameters, cognitive psychophysiologists have used several related in-
ference rules to interpret obtained results theoretically. These rules are not
officially codified in any single place, but one may educe them from examin-
ing a variety of representative studies. They concern the implications of joint
factor effects on behavioral measures (e.g., reaction time) and parameters of
ERP components (e.g., amplitude and latency). An especially important
parameter in this respect is peak latency, that is, the length of time between
stimulus onset and the occurrence of a component’s greatest amplitude. In
particular, the peak latency has often been treated as an indicator of mental
processes thought to precede and mediate an individual component. Underly-
ing this interpretation are several implicit assumptions, which we discuss more
fully later, a key one being that the termination of certain processes de-
termines the moment when the peak amplitude of a component occurs.

We will consider six important inference rules here. Some of these provide a
basis for assessing the functional significance of ERP components and associ-
ating them with particular mental processes. Others are intended to demon-
strate the existence of separate processing stages or to determine the locus of
factor effects in such stages (cf. Sternberg, 1969). We do not claim that the set
of rules outlined below is foolproof or exhaustive, but it does serve to illustrate
the style of reasoning often adopted by cognitive psychophysiologists.

Rule 1: Functional significance of ERP components. If an experimental factor
is believed to influence a particular mental process, and if the parameters of
an ERP component depend on this factor, then infer that the component is a
manifestation either of this process or of some other subsequent related
process. With this rule, one can assess a component’s functional significance
and narrow the range of processes that the component may conceivably
manifest.

Rule 2: Locus of factor effects. If an ERP component is believed to manifest
a particular mental process, and if an experimental factor has equal effects on
the component’s mean peak latency and mean reaction time, then infer (a)
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that the factor only influences this process or some other preceding one(s), and
(b) that the process(es) in which the effect takes place mediate overt responses
to presented stimuli. With this rule, the effects of experimental factors may be
localized in a subset of processing stages that form part of the stimulus-re-
sponse pathway. Rule 2 also provides a link between components of the ERP
and observed behavior.

Rule 3: Locus of factor effects. If an ERP component is believed to manifest
a particular mental process, and if an experimental factor has a greater effect
on mean reaction time than on the component’s mean peak latency, then infer
that the factor influences some additional (e.g., subsequent) process(es) whose
operation mediates overt responses to presented stimuli but not the generation
of the component. Moreover, a corollary of this rule is that if the factor in
question has any effect on the mean peak latency of the component, then infer
that its effect also occurs partly during some prior process(es) whose operation
does mediate both the component and overt responses to presented stimuli.
The latter inference complements the ones drawn from Rule 2. In certain
respects, however, Rule 3 is more powerful than Rule 2, because it not only
helps determine the locus of factor effects but also demonstrates the existence
of other related processes. Further ways of achieving such demonstrations are
embodied in the next two rules.

Rule 4: Existence of processing stages. If an ERP component is believed to
manifest some mental process, and if two experimental factors have additive
effects on the component’s mean peak latency, then infer that these factors
influence two distinct processing stages, including (a) either a stage associated
with this component or some preceding stage, and (b) another even earlier
stage. In addition, a corollary of this rule is that if two factors have interactive
effects on a component’s mean peak latency, then infer that these factors both
influence either the process manifested by the component or some preceding
process. Rule 4 therefore constitutes a direct extension of Sternberg’s (1969)
additive-factor method to ERP component latencies. To apply it, one must
manipulate two factors orthogonally and measure their joint effects on a single
component’s latency. Interestingly, with ERPs, there is also another comple-
mentary way of testing for the existence of processing stages. As stated in Rule
5, this alternative involves manipulating a single factor and measuring its
respective effects on the mean peak latencies of two successive ERP compo-
nents.

Rule 5: Existence of processing stages. If an early ERP component and a
later ERP component are believed to manifest two distinct mental processes,
and if an experimental factor has equal effects on the mean peak latencies of
the two components, then infer that the processes constitute nonoverlapping
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stages and that this factor influences the first of these stages or some even
carlier stage. Rule 5, like Rule 4, may be used both to demonstrate the
existence of processing stages and to localize the effects of factors in them. No
direct analog of it is available for reaction-time data, because they do not
provide estimates of the termination for each of two (or more) individual
stages that operate in tandem.

Rule 6: Locus of factor effects. If an ERP component is believed to manifest
a particular processing stage, and if the component’s peak latency but not its
onset time (i.e., the time between stimulus presentation and the start of the
component) depends on an experimental factor, then infer that the factor
influences this stage but not any earlier stages. This rule further constrains the
locus of effects that a factor has in selected stages of processing (cf. Rule 2).

Rationale

The rationale for the six inference rules should be apparent already. It rests
on the basic stage model of information processing formulated originally in
mental chronometry (Donders, 1868 /1969; Sternberg, 1969). As was the case
earlier, the working assumption here is that processing stages are strictly
successive (i.e., have no temporal overlap). It is also assumed that the peak
latency of an ERP component includes the summed durations only of those
stages up to and including the one putatively manifested by the component
(plus a possible residual delay). Given the latter assumption, the effect of a
factor on the duration of an early stage should propagate through the system
to affect later components’ peak latencies by the same amount (Rule 5).
Furthermore, two factors that influence different stages whose durations both
contribute to a component’s peak latency should affect this latency additively,
just as they do overt reaction time (Rule 4). However, because ERP latencies
embody selected subsets of stage durations, they may have greater diagnostic-
ity than do reaction times, which combine the durations of all stages up to and
including response execution.

For example, fig. 12 shows one way that these possibilities might be
realized. Here we have depicted a hypothetical version of the stage model in
which individual components of the ERP are tentatively linked to successive
mental processes. According to this view, a series of stages (S; i=1,2,..., n)
leads from stimulus input to response output, with various factors (viz., F;, F,,
and F,) affecting the durations of different stages. Associated with each stage
is an ERP component (C; i =1, 2,..., n). Under the indicated arrangement,
the six inference rules for interpreting component latencies and reaction times
would apply.

Note that the respective components do not necessarily have to emerge in
the ERP waveform at exactly the same times as the corresponding stages take
place. Some residual delay could intervene between the execution of a stage
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Fig. 12. Stage model in which individual components (C,, Cs,..., C,) of the ERP are tentatively
linked to successive processing stages (S, S,,..., S,). (The solid boxes indicate stages in the main
stream of processing that leads from stimulus input to response output. The dashed boxes indicate
other ancillary stages (S}, S7,..., S,) that are not in the main stream but that may also be

precursors of the components. F,, F,, and F; denote three factors that influence various stages.)

and the occurrence of its associated ERP component. Other ancillary stages
(S/; i=1,2,..., n) outside the main stream of processing (fig. 12, dashed
boxes) could also be immediate precursors of the components and lengthen
their latencies. Factor effects on the durations of mainstream processing stages
(fig. 12, solid boxes) would, nevertheless, appear fully in the peak latencies of
selected components, assuming that the peak latencies are indeed a function of
stage-termination times. More precisely, the key assumption is that ¢, =z, +
to+ ..o+t + 1y, where 1 ; is the peak latency of the ith component, ¢ ; is
the duration of the ith main stage, and ¢, is extra residual delay (i=
1, 2,..., n) due to ancillary processing events outside the main stream.

7.3. Hlustrative studies

To illustrate some applications of the preceding inference rules for interpre-
ting reaction times and ERP component latencies theoretically, we will con-
sider some findings from four representative studies. These studies concern the
mental processes of stimulus discrimination and identification, memory retri-
eval, and response preparation manifested through the N,, N200, P300, and
RP components, as well as EMG activity and reaction-time data. Together
they exemplify the kinds of accomplishments that have resulted from wedding
the chronometric paradigm with cognitive psychophysiology.

7.3.1. McCarthy and Donchin (1981)

Our first example comes from a study by McCarthy and Donchin (1981,
1983). Here subjects made responses to the printed words RIGHT and LEFT
by pressing buttons with their right and left hands. Two independent variables
were manipulated orthogonally. One was stimulus discriminability; either the
words appeared against a background array of pound (#) symbols (high-dis-
criminability condition), or they appeared against a background of other
random letters (low-discriminability condition). The other variable was stimu-



48 D.E. Meyer et al. / Modern mental chronometry

lus-response compatibility; either the word RIGHT required a right-hand
button press and the word LEFT required a left-hand button press (high-com-
patibility condition), or the mapping between the stimulus words and button
presses was reversed (low-compatibility condition). On each trial of these
conditions, three dependent variables were measured: Peak latency of the P300
component, overt reaction time, and response accuracy.

Replicating results from a related experiment by Sternberg (1969), Mc-
Carthy and Donchin (1981, 1983) found that stimulus discriminability and
stimulus-response compatibility had additive effects on mean reaction time.
This outcome supports Sternberg’s (1969) original suggestion that the dis-
criminability and compatibility factors may influence two different stages of
processing, to wit, stimulus evaluation (e.g., encoding and identification) and
response selection, respectively. Furthermore, the mean of the P300 compo-
nent’s peak latency varied nearly as much with stimulus discriminability as did
mean reaction time, but this latency depended hardly at all on stimulus-re-
sponse compatibility.

Given these results, McCarthy and Donchin (1981, 1983) concluded that
the latency of the P300 component reflects the duration of stimulus-evaluation
processes, and that the effects of stimulus discriminability are localized in
these processes (cf. Duncan-Johnson & Donchin, 1982). They also concluded
that whatever processing stage is influenced by stimulus-response compatibil-
ity occurs after stimulus evaluation has been completed. Their conclusions
follow from Rules 1 through 3 outlined earlier (see Inference Rules), illustrat-
ing how the approach of cognitive psychophysiology can simultaneously
reinforce hypotheses developed previously through mental chronometry and
how behavioral measures can help determine the functional significance of
ERP components.

7.3.2. Ford et al. (1979)

Our second example comes from a study by Ford et al. (1979). Here
subjects had to perform a memory-scanning task similar to one that Sternberg
(1966, 1969) has used. Two groups of subjects were included; young and
elderly adults. Their task involved a series of trials, on each of which a short
list of items (alphanumeric characters) was retained in memory and a speeded
decision was made about whether or not a presented test stimulus belonged to
the list. The peak latency of the P300 component, overt reaction time, and
response accuracy were measured as a function of the list length (i.e., memory
load) and subjects’ age.

Consistent with results reported originally by Sternberg (1966), Ford et al.
(1979) found that mean reaction time increased linearly as list length in-
creased. The linear list-length effect on mean reaction time may reflect a
process in which short-term memory is searched serially for each test stimulus
(Sternberg, 1966, 1969). In addition, there was a linear effect of list length on
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the peak latency of the P300 component (Ford et al.,, 1979; cf. Marsh, 1975).
This latter effect did not depend significantly on the age of the subjects.
Although the P300 component’s peak latency was a bit longer for the elderly
subjects, their latency function had about the same slope as that of the young
subjects.

In terms of Rule 4, it therefore appears that list length and age influence
two separate stages of processing, one or both of which take place before the
process manifested by the P300 component. For example, list length may
influence a serial memory-search stage, whereas age influences a prior encod-
ing process. The P300 component’s peak latencies suggest that the rate of
memory search, as quantified by the list-length effect on them, was about the
same regardless of the subjects’ age.

However, list length had a significantly greater effect on mean reaction
times than on peak latencies of the P300 component. An especially big
difference between the list-length effects for these two measures occurred in
the elderly subjects. Assuming reaction times manifest both stimulus evalua-
tion and other processes thereafter, whereas the P300 component is a relatively
pure manifestation of stimulus evaluation, Ford et al. (1979) inferred that list
length influences not only a memory-search stage but also one or more
subsequent stages in which responses are mobilized for execution. The young
and elderly subjects may differ considerably from each other during the latter
stage(s), with the elderly subjects taking more time there than the young do.
This inference, which goes beyond conclusions reached by Sternberg (1966,
1969) about encoding, memory search, and response execution, illustrates
another application of Rule 3 for demonstrating the existence of processing
stages and determining the locus of factor effects.

7.3.3. Coles et al. (1985)

Further insights regarding the process of response execution and its relation
to stimulus evaluation have been obtained by Coles, Gratton, and their
colleagues (Coles & Gratton, 1986; Coles et al., 1985) who again used Rules 1
and 3 for making theoretical inferences. Here subjects produced rapid squeeze
responses with their right and left hands for two different target letters, H and
S, respectively. The stimuli were presented visually at a central fixation point
and were surrounded by a flanking array of “noise” characters. In one case,
the compatible-noise condition, the noise characters had the same identity
(e.g., H) as the target stimulus (e.g., H). In another case, the incompatible-noise
condition, the noise characters had the same identity as the other unpresented
target stimulus (e.g., S). Several dependent measures of subjects’ performance
were recorded under each condition, including response accuracy, reaction
time, peak latency of the P300 component, latency of onset in EMG activity,
and subcriterion squeeze activity (i.e., squeezing that did not exceed a threshold
set for overt responses). Paralleling the results of Ford et al. (1979) and some
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other investigators (e.g., Duncan-Johnson & Donchin, 1982), Coles et al.
(1985) found that a selected factor, namely, noise incompatibility, increased
the P300 component’s mean peak latency but had an even greater effect on
mean reaction time. It was concluded, therefore, that noise incompatibility
influenced both the process of stimulus evaluation and a subsequent process
associated with response execution, as Rule 3 dictates.

To analyze response execution more closely, Coles et al. (1985) examined
EMG and subcriterion squeeze activity as a function of noise incompatibility.
When there was incompatible noise, subjects often tended toward partial
incorrect covert responses before eventually producing complete correct overt
responses. On the basis of these and other related results, a continuous-flow
model of stimulus evaluation and response execution was advocated (cf.
Eriksen & Schultz, 1979). According to this model, parallel activation of an
incorrect response increases temporarily over time as the evaluation process
transmits partial information about the identities of the incompatible-noise
characters, thereby creating response competition before the central target
stimulus has been evaluated completely and used to initiate a correct response.

Some additional evidence that activation in the response system grows
continuously has come from subsequent analyses by Coles and Gratton (1986).
They plotted the results of Coles et al. (1985) in terms of a normalized
speed-accuracy tradeoff curve. This normalization entailed graphing subjects’
response accuracy (percentage of correct responses) versus a ratio computed
by dividing the peak latency of the P300 component into the overt reaction
time on a trial-by-trial basis. For each of several small intervals over the range
of this ratio (0.2 < RT/P300 < 1.0), the accuracy of responses whose parame-
ters fell in that interval was determined. '® The results revealed a smooth
tradeoff curve, which first tended toward below-chance accuracy because of
response competition and then reversed direction, gradually increasing toward
perfect accuracy.

According to Coles and Gratton (1986), this outcome implies a continuous
process of response preparation before overt physical movement takes place.
By dividing the P300 latency into the observed reaction time on each trial, it is
possible that they at least partially removed contributions in the speed-accu-
racy tradeoff curve from a discrete all-or-none stimulus-evaluation process
with stochastic transition times. The normalized tradeoff curve may manifest
the nature of residual response-preparation processes more clearly, helping to
overcome our previous criticism of standard (average) speed-accuracy tradeoff
curves (Meyer & Irwin, 1981; Meyer, Irwin, et al., 1988).

18 In technical terms, this curve constitutes a form of “micro-tradeoff” between speed and
accuracy (Pachella, 1974), representing accuracy as a function of trial-by-trial changes in
processing speed.
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In seeking more evidence to test the continuous-flow model and response-
competition hypothesis, Coles and Gratton (1986) also examined another
aspect of the ERPs, which they have termed the /ateralized readiness potential
(LRP; cf. Coles, Gratton, & Donchin, 1988). The LRP was measured by
recording activity with electrodes on the scalp over the motor cortices of the
two cerebral hemispheres and then subtracting the activity for one hemisphere
from the activity for the other hemisphere. This measure yielded a number of
interesting results. Before relatively fast correct and incorrect responses, the
LRP tended to increase such that it anticipated the side of the impending
response, even when a test stimulus had not appeared. The observed tendency
suggested a form of “aspecific response priming.” After stimuli were presented
on trials involving the incompatible-noise condition, the LRP often dipped
briefly toward the side of the incorrect response, even when a correct overt
response ultimately occurred. The latter dip helps confirm the response-com-
petition hypothesis. Finally, EMG activity in the muscles used to produce the
overt responses typically began at a moment when the LRP reached a set level,
regardless of what the stimulus condition was and how long the LRP took to
reach this level. It therefore appears that response execution may entail
crossing a fixed threshold of activation, as postulated in the cascade model
(McClelland, 1979) and other continuous models (e.g., Ratcliff, 1978).

7.3.4. Ritter, Simson, and Vaughan (1983)

Complementing these detailed findings about response preparation and
execution, Ritter, Simson, and Vaughan (1983) have studied more closely the
processes associated with pattern recognition and stimulus categorization,
applying Rules 5 and 6 to draw theoretical inferences. Their study included
both a simple reaction-time task (one stimulus-response combination) and a
20/no-go reaction-time task (multiple stimuli, only one type of which required
a response; cf. Donders, 1868,/1969). On each trial of the simple-RT task,
subjects lifted their right index fingers as quickly as possible when a prespeci-
fied visual test stimulus (e.g., the pattern < >) appeared. On each trial of the
go/no-go RT task, there were two different possible classes of test stimuli
(e.g., the patterns < > and > <, respectively). These stimulus classes had
unequal probabilities of occurrence, namely, 0.8 and 0.2. For the stimuli with a
probability of 0.2, subjects lifted their right index fingers as quickly as
possible, yielding the “go” trials. No overt responses were supposed to be
produced for the stimuli with a probability of 0.8, yielding the “no-go” trials.
The go/no-go RT task therefore required stimulus evaluation on all trials and
response selection on some trials, whereas the simple-RT task required little
evaluation or selection.

As part of this task manipulation, another factor was also varied. Either the
test stimuli were relatively easy to discriminate (e.g., the pattern < > vs. the
pattern > <), or they were harder to discriminate (e.g., the pattern > > > >
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vs. the pattern < > > > >). ERPs and overt reaction times were recorded as a
function of the discriminability factor and task type (simple RT vs. go/no-go
RT).

For these measures, Ritter, Simson, and Vaughan (1983) focused specifi-
cally on two ERP components. First, the average ERP obtained in the
simple-RT task was subtracted from the average ERP obtained in the choice-
RT task with the stimuli that had a 0.8 probability of presentation. This
yielded a residual negative ERP component, termed N,, whose peak latency
occurred on the order of 250 ms after stimulus onset. The N, component’s
peak latency was hypothesized to manifest completion of a pattern-recognition
stage. Although the 0.8-probability stimuli required no overt responses, pat-
tern recognition may have been needed for them because they had to be
discriminated from the 0.2-probability stimuli, whereas no such discrimina-
tions were needed in the simple-RT task.

Second, the average ERP obtained in the choice-RT task with the 0.8-prob-
ability stimuli was subtracted from the average ERP obtained with the
0.2-probability stimuli. This yielded another negative ERP component, termed
N2, whose peak latency occurred on the order of 300 ms after stimulus onset.
The N2 component’s peak latency was hypothesized to manifest completion of
a subsequent stimulus-categorization stage.

To support these hypotheses regarding the N, and N2 components, Ritter,
Simson, and Vaughan (1983) examined the magnitudes of the peak latencies
and their variation with stimulus discriminability. The N2 component’s peak
latency in the average ERP exceeded the N, component’s peak latency, and
the discriminability factor had almost identical effects on both of them,
difficult discriminations yielding greater latencies in each case. Consistent with
Rule 5, this outcome led Ritter, Simson, and Vaughan (1983) to infer that two
distinct stages of processing (viz., pattern recognition and stimulus categori-
zation) were associated with N, and N2, respectively, and that stimulus
discriminability influenced the first of these stages.

That the discriminability factor might influence some processing stage
earlier than pattern recognition was rejected on other grounds. Ritter, Simson,
and Vaughan (1983) found that although the N, component’s peak latency
depended on stimulus discriminability, its onset latency did not. Paralleling
Rule 6, this result suggests that the discriminability effect must have occurred
in the recognition stage, because if the effect had taken place any earlier, then
it should have propagated ahead to the N, onset latency, not just the N, peak
latency (see Rationale, Inference Rules).

7.3.5. Summary

Taken as a whole, the four ERP-RT studies that we have reviewed here
offer an impressive illustration of how cognitive psychophysiology has both
enhanced mental chronometry and benefited from it. Through judicious
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application of Rules 1 through 6 for theoretical inferences based on psycho-
physiological variables, one may make strides toward assessing the functional
significance of ERP components, demonstrating the existence of information-
processing stages, and determining the locus of factor effects in those stages.
The range of mental processes spanned by this approach extends from
relatively early stages of pattern recognition (e.g., Ritter, Simson, & Vaughan,
1983) to intermediate stages such as short-term memory search (e.g., Ford et
al., 1979) and later stages involving response selection, motor programming,
and execution (Coles & Gratton, 1986; Coles et al.,, 1985; McCarthy &
Donchin, 1981, 1983). A number of other examples could have been men-
tioned as well (e.g., see Gaillard & Ritter, 1983; Hillyard & Kutas, 1983). In
particular, studies that use combinations of RT and ERP measures to focus on
the interface between stimulus evaluation and response execution seem espe-
cially suited to pursuing the serial-versus-parallel and discrete-versus-continu-
ous distinctions outlined previously under the chronometric paradigm (cf.
Meyer, Irwin, et al., 1988; Miller, 1988).

8. Limitations of cognitive psychophysiology

Still, despite the many accomplishments by studies like those above, cogni-
tive psychophysiology has some serious limitations. There are significant
weaknesses in the theoretical and methodological foundations of the psycho-
physiological approach as it currently exists. These weaknesses could under-
mine conclusions reached through the preceding inference rules, creating
frustrations that might precipitate an acrimonious ERP-RT divorce. Unless
new groundwork takes place to improve the present situation, the marriage of
mental chronometry and cognitive psychophysiology will face a rough road
ahead.

8.1. Theoretical weaknesses

8.1.1. Relation between ERP latencies and stage-termination times

One critical weakness in the theoretical foundation of cognitive psycho-
physiology involves the putative relation between the latencies of ERP compo-
nents and key events during associated mental processes. As we mentioned
already, many psychophysiologists have assumed that the peak latencies of
selected components (e.g., N200, P300, etc.) correspond closely to the times at
which particular stages of processing (e.g., stimulus evaluation) terminate. A
component’s peak latency is not necessarily believed to equal a stage’s
termination time exactly, but the peak latency is often interpreted as if it and
the termination time of a stage differ only by a constant amount due to some
residual delay of the component in the ERP waveform (e.g., see Coles &
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Fig. 13. Activation mechanism for a stage of processing in which factor effects on the rate of
activation may produce larger changes in mean reaction time than in mean peak latency of an
ERP component associated with the stage. (The solid curves indicate different rates of activation
induced by different levels of a given factor. The dotted horizontal lines indicate intermediate and
high thresholds that respectively trigger the release of the component and terminate the stage
when activation crosses them.)

Gratton, 1986; Coles et al., 1985; Ford et al., 1979; McCarthy & Donchin,
1981; Ritter, Simson, & Vaughan, 1983). Up to now, this interpretation has
received little real justification. The primary basis for focusing on peak
latencies appears to be that they are easier to measure than onset latencies,
offset latencies, and other ERP time points.

It is possible instead that the onset latency, offset latency, or some other
nondescript time point of an ERP component actually corresponds more
closely to the termination of a processing stage than does the peak latency.
Perhaps the component’s peak latency manifests events during the middle of
the stage’s execution rather than an event at its end. If such were the case, then
many of the previous inference rules for interpreting ERP and reaction-time
measures would have to be reformulated, and the conclusions derived from
them would, in at least some cases, need reassessment (for a similar critique,
see Miller, 1988).

For example, consider the following scenario, as shown in fig. 13. Suppose
that a particular stage of processing entails a continuous activation mechanism
with two thresholds, one set at an intermediate level and the other at a
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somewhat higher level. Furthermore, suppose that as activation increases
gradually during this stage, it triggers the subsequent onset of a corresponding
ERP component when the intermediate threshold is crossed, whereas the stage
terminates and transmits its output to later response-related processes when
the high threshold is crossed. Then for factors that affect the duration of the
first stage, the peak latency of the component would not necessarily exhibit
the same magnitudes of effects as do overt reaction times. To be specific, if
these factors alter the rate at which activation rises toward threshold, their
effects on mean reaction time would exceed their effects on mean peak
latency, even though the factors do not influence any other later (or earlier)
processes. Consequently, troubling violations of Rule 3 and of conclusions
based on it could arise.

To see how this might cause problems, let us review the study by Ford et al.
(1979). Some results obtained there, which we summarized previously (Illustra-
tive Studies), revealed a larger effect of list length on mean reaction time than
on the P300 component’s peak latency in a memory-scanning task. Applying
Rule 3 of ERP interpretation, Ford et al. (1979) took these results to imply
that list length influences one or more response-related stages after stimulus
evaluation has been completed. This inference rests on the assumption that,
regardless of list length, the mean peak latency of the P300 component
manifests the end of stimulus evaluation, differing by no more than a constant
amount from the average time at which the evaluation process terminates
relative to stimulus onset. Another possibility, however, is that some inter-
mediate event during stimulus evaluation triggers the P300 component before
the evaluation process reaches completion and transmits its output for subse-
quent decisions and responses. The differential effects of list length on mean
peak latencies and mean reaction times could result from the sort of multiple-
threshold activation mechanism suggested above (Ratcliff, 1978). If the system
works like this, then contrary to the conclusions of Ford et al. (1979), one
should not infer that list length affects the duration of any later stage (e.g.,
decision, response selection, and execution) after stimulus evaluation has
terminated.

A similar account would perhaps explain the results of other studies whose
experimental factors (e.g., stimulus probability, noise compatibility, etc.) have
yielded larger effects on mean reaction times than on peak latencies of P300
and related ERP components (e.g., Duncan-Johnson & Donchin, 1982). We do
not know for sure that any selected component necessarily manifests all of the
activity in some stage of processing associated with it (Miller, 1988). So before
reaching definitive conclusions from differences between the magnitudes of
factor effects on reaction times and component latencies, better validated
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models of correspondences between intrastage processing events and temporal
loci of ERP components are needed. °

8.1.2. Identification of neural generators

As part of this modeling effort, it may prove helpful to identify more
precisely the underlying neural generators of ERP components (Allison,
Wood, & McCarthy, 1986). At present, cognitive psychophysiologists have not
yet determined exactly what sections of neural tissue in the brain’s substrates
are sources of particular components such as N200, P300, and so forth. These
components could conceivably result from a composite of more or less
asynchronous activity at multiple intracranial sites whose functions differ
considerably (Allison et al., 1986; Wood & Allison, 1981; Wood et al., 1984).
If so, then such complexities must be accommodated by detailed models of
“stage-wave relations” between mental processing events and ERP-component
time points. The models should, in essence, specify joint correspondences
involving three related types of entities: functional stages of processing, ERP
components, and neural generators.

8.1.3. Treatment of stochastic variability

On the basis of our experience with information-processing models devel-
oped through past efforts in mental chronometry, it seems clear that future
generations of models in cognitive psychophysiology must incorporate some
other important features as well. They should deal directly with the inherent
stochastic variability of processing stages. Such stages do not always start or
stop at the same time on each trial, nor do the same outputs always emerge
from them, even if stimulus inputs remain the same. This variability is unlikely
to be well accommodated by attributing it simply to background noise
separate from the basic processes at hand; it is not the same as ancillary noise
of an electrical sort superimposed on an otherwise deterministic ERP signal.
Rather, stochastic elements must play an integral role in the mental and
physical processes postulated by theorists for viable models of cognition and
action (Audley, 1960; Laming, 1968; Link, 1975; Meyer, Abrams, et al., 1988;
Pike, 1973; Ratcliff, 1978; Schmidt et al., 1979; Stone, 1960).

19 The present concern is not disarmed by reports of frequent cases in which the peak latencies of
certain ERP components (viz., P300) have exceeded mean reaction times (e.g., Coles et al.,
1985; Duncan-Johnson & Donchin, 1982; Kutas et al., 1977; Ritter, Simson, & Vaughan,
1983). Such cases could arise even though the triggering event for a component takes place
during the middle, rather than at the termination, of a processing stage that leads ultimately to
overt responses. If the component’s peak latency includes a residual delay after the triggering
event, because some other ancillary process not required for responding intervenes between the
triggering event and the onset of the component, then the peak latency might easily exceed the
observed reaction time (fig. 12), but our above argument would still hold.
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8.2. Methodological weaknesses

Accompanying the aforementioned theoretical weaknesses in cognitive psy-
chophysiology, there are also significant methodological weaknesses. In par-
ticular, current techniques for analyzing psychophysiological data tend to be
somewhat inadequate, given the substantial complexity and variability inher-
ent in patterns of ERPs and reaction times. Applications of these techniques
may run the risk of reaching erroneous conclusions, and sufficiently powerful
alternatives to them do not yet exist. Further work will be required to cure the
problem.

8.2.1. Measurement of component latencies

Let us consider, for example, the measurement of latencies associated with
underlying components in the ERP waveform. If one’s objective is to measure
the peak latency for a component such as P300 on a trial-by-trial basis, then
there are some promising methods (Coles et al., 1986). These methods entail
preliminary enhancement of the ERP signal on each trial (e.g., via vector
filtering; Gratton, Coles, & Donchin, 1983) followed by template matching
(e.g., Kutas et al., 1977) or, under some circumstances, simple peak picking
(e.g., Coles et al., 1985). At present, however, none of them have been
perfected; they do not deal fully with difficulties caused by the stochastic
fluctuation of an ERP component’s morphology and temporal locus over
trials, nor do they provide a complete account of contributions due to noise
from background brain activity. Some investigators have therefore chosen
instead to stick with the conventional technique of measuring latencies for
ERP components by first averaging the records of ERPs across trials involving
the same experimental condition (e.g., Ritter, Simson, & Vaughan, 1983). In
this case, a component’s onset latency, peak latency, and so forth may then be
derived from the less noisy average ERPs. However, the averaging technique
can introduce biases of its own that vitiate subsequent inferences about the
dynamics of cognition and action.

To be specific, suppose that we conduct an experiment concerning the
effects of two factors, F, and F,, on two different ERP components, C; and
C,, one occurring later than the other (e.g., N200 and P300). The experiment
might address whether these components respectively manifest two separate
stages of processing, which can be tested via the inference rules outlined
earlier (viz., Rules 4 and 5). Also, suppose that in testing the stage hypothesis,
we average the ERPs within each condition defined by a particular combina-
tion of factor levels, and we measure the peak latencies of the components
from these averages. Then mistaken conclusions could easily result.

One such mistake might involve rejecting the stage hypothesis inap-
propriately. Under this hypothesis, the two factors should affect a late
component’s peak latency additively on each trial, assuming that these laten-
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cies correspond to stage-termination times. So if the hypothesis were valid, the
means of the peak latencies from individual trials should exhibit additive
factor effects as well. Be that as it may, an interaction could still appear in the
peak latencies of a relatively late component like C, when they are derived
from the average ERPs, because the peak latency of a component in an
average ERP does not necessarily equal the mean of that component’s peak
latencies derived trial-by-trial (Callaway, Halliday, Naylor, & Thouvenin,
1984). The two measures may differ substantially even when the peak latencies
on individual trials are obtained with perfect accuracy. Given this incipient
inequality, a component’s peak latency in an average ERP constitutes a
potentially biased estimate of the mean termination time for any associated
processing stage. The magnitude of the bias may vary in subtle ways, depend-
ing on the morphology of the ERP component in question. This could lead the
stage hypothesis to be rejected via Rule 4, even though there are underlying
successive stages at the level of individual trials.

A similar error could also result through the application of Rule 5 to peak
latencies of components derived from average ERPs. For the stage hypothesis
to hold under Rule 5, the peak latency of a relatively late component must
exhibit exactly the same factor effect as the peak latency of an earlier
component does, if the factor effect is localized in a stage manifested by the
earlier component. This requirement might hold with peak latencies measured
on individual trials but not otherwise. Depending on the component’s mor-
phology, averaging ERPs across trials before measuring peak latencies might
increase (or decrease) the apparent effect of a factor on late versus early
components. The implication is that, when applying Rules 1 through 6,
investigators who want to assess stage durafions and concomitant factor
effects should first measure peak latencies and then average, not the reverse. 2

Of course, this is not to say that averaging ERPs before measuring their
components’ peak latencies always produces misleading results. It seems less
likely that the latter method would yield spurious additivity than that it would
yield spurious interactions among factor effects. So if investigators measure
peak latencies after averaging ERPs and find evidence supporting a discrete
stage model, then perhaps one can still have some confidence in their conclu-
sions. For example, confidence may still be warranted in some of the conclu-
sions reached by Ford et al. (1979) and Ritter, Simson, and Vaughan (1983).

We suspect, nevertheless, that there are some cases in which averaging
ERPs across trials before measuring component latencies may have yielded
mistaken conclusions. Consider, in particular, other results from the study by

20 For reasons analogous to those outlined above, additive-factor analyses of mean peak ampli-
tudes should be done by first measuring a component’s peak amplitude on each trial and then
averaging, rather than averaging ERPs across trials and then measuring the peak amplitude of
the component in the composite waveform.
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Ritter, Simson, and Vaughan (1983). Although they reported equal effects of
stimulus discriminability on peak latencies of the N, and N2 components
derived from ERP averages, certain other details of their data regarding N,
and N2 suggested that the processes manifested by these components are not
entirely separate in time. The peak latency of the N, component appeared
somewhat larger than the onset latency of the N2 component (i.e., the time at
which N2 started to rise above base level). Ritter, Simson, and Vaughan (1983)
took the latter outcome as evidence that the stimulus-categorization process
associated with N2 may start before the pattern-recognition process associated
with N, has finished, consistent with McClelland’s (1979) cascade model and
Miller’s (1982) asynchronous discrete-coding model.

Yet this is not the only possible interpretation. On each trial of Ritter,
Simson, and Vaughan’s (1983) study, the onset latency of N2 may have
exceeded the peak latency of N4, as expected under a strict serial stage model.
If the latencies of the components varied randomly across trials, however, then
averaging the ERPs before measuring them could have made the N2 onset
latency appear less than the N, peak latency. The reason is that ERP averages
yield components whose onset latencies tend to equal the minimum of the
onset latencies from individual trials. So the onset latency of a component in
the average ERP will usually be less than the average of the component’s onset
latencies measured on each trial separately. Also, the latter bias is likely to be
greater than the corresponding one for peak latencies, which we discussed
earlier. Averaging ERPs before measuring onset and peak latencies would,
therefore, yield exactly the pattern of results that Ritter, Simson, and Vaughan
(1983) reported, even if processing were strictly serial.

8.2.2. Other difficulties with averaging

When the latencies of ERP components are measured accurately on individ-
ual trials and only averaged thereafter, cognitive psychophysiology may still
suffer from other difficulties associated with aggregating reaction-time and
accuracy data. These difficulties are pervasive and difficult to escape, as
mental chronometry has repeatedly discovered. Supplementing chronometric
measures with additional results from ERP records will not always suffice to
overcome the problem.

To illustrate the degree of difficulty here, let us review the analyses of
speed-accuracy tradeoff curves done by Coles and Gratton (1986), whose work
was summarized earlier (see [llustrative Studies). They sought a way of
attenuating the contamination in tradeoff curves caused by averaging accuracy
data across trials, which may produce smearing and obscure the presence of
discrete (viz., all-or-none) processes. Their approach entailed measuring the
peak latency of the P300 component, an indicator of stimulus-evaluation time,
on each trial and dividing it into the corresponding overt reaction time for that
trial, deriving a resultant RT /P300 ratio. Response accuracy was then aver-
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aged across trials as a function of the ratio. This averaging yielded mean
accuracy scores at each of several RT/P300 values. The hope was that the
obtained results would be controlled for stochastic fluctuations in the comple-
tion times of stimulus evaluation, thereby revealing a pure step-function in
response accuracy over time, if the evaluation processes were really discrete
(i.e., all-or-none). However, a smooth undulating tradeoff curve still emerged.
This outcome, like the gradual monotonic increase of accuracy over time in
standard speed-accuracy tradeoff curves, might tempt one to conclude that
stimulus evaluation and response execution are continuous overlapping
processes, as postulated by continuous-flow models (Eriksen & Schultz, 1979;
McClelland, 1979).

The problem with such a conclusion is that the approach taken to reach it
still does not deal fully with stochastic fluctuations of the times at which
stimulus-evaluation and response-execution processes are completed. When
the RT/P300 ratio from individual trials is used as a predictor variable in
plotting response accuracy, there are at least two significant residual sources of
variance that could smear the resultant tradeoff curve. First, the measured
P300 component’s peak latency may be a somewhat unreliable indicator of
stimulis-evaluation time. If only a moderate correlation exists between the
completion time of the evaluation process on a trial and the peak latency of
P300, then averaging the accuracy of responses over trials that have the same
RT/P300 ratio could obscure an underlying step-wise information-accumula-
tion function with stochastic transition times (Meyer & Irwin, 1981; Meyer,
Irwin, et al., 1988). Secondly, response preparation and execution may them-
selves entail an all-or-none process with stochastic transition times, as we
observed previously (fig. 4; cf. Meyer et al., 1985). As a result, this would
cause additional smearing in the average speed-accuracy tradeoff function,
even when the mean response accuracy is plotted versus RT/P300. The
RT/P300 ratio does not control for such smearing, because the RT measure
contains a contribution from response processes on each trial, which are at
least partially uncorrelated with P300 latencies.

A potential cure for the latter problem might be to use psychophysiological
measures in combination with our speed-accuracy decomposition technique,
analysis of reaction-time mixture distributions, and appropriate mathematical
models of information-processing dynamics (Meyer, Irwin, et al., 1988; Meyer
et al., 1984, 1985). By relating ERP data obtained on individual trials to the
forms of underlying latency distributions, perhaps one can better identify the
internal processing states that mediate a given response. In turn, this may help
to purify derived speed-accuracy tradeoff curves more fuily.

8.2.3. The subtraction problem
Finally, a comment is in order about the practice adopted by some
investigators of subtracting data from different conditions to isolate ERP
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components and to estimate their latencies (e.g., Hansen & Hillyard, 1980;
Niidtanen & Michie, 1979; Ritter, Simson, & Vaughan, 1983). As mental
chronometry’s past has revealed, subtraction methodology sometimes leads to
rather deceptive outcomes (e.g., Wundt, 1880). When one uses this methodol-
ogy for analyzing data from conditions that involve different experimental
tasks, it can yield embarrassing artifacts caused by uncontrolled variations of
subjective strategies or violations in the assumptions of pure insertion and
selective influence (Kiilpe, 1893,/1909; cf. Sternberg, 1969). With ERPs espe-
cially, such artifacts might produce a spurious proliferation of illusory compo-
nents, much like what happened when Wundt (1880) was seduced by Donders’
(1868 /1969) subtraction method and, as a result, obtained evidence for an
implausibly large number of distinct processing stages. Careful attention must
therefore be given to documenting the functional significance of ERP compo-
nents that are derived through subtraction methodology before letting them
become bed partners in the marriage with mental chronometry. Cognitive
psychophysiologists should test the assumptions of pure insertion and selective
influence rigorously, checking for ancillary context-dependent changes in
subjective strategies, lest the psychophysiological approach enter another Dark
Age of the sort that previously befell the chronometric paradigm (table 1).

8.3. Fundamental lessons from mental chronometry

For the marriage between mental chronometry and cognitive psychophysi-
ology to flourish henceforth, we urge in conclusion that psychophysiologists
remember several fundamental lessons learned through the trials and tribula-
tions of the chronometric paradigm. These lessons include the following:

There’s no free lunch. A strict empiricist orientation will not suffice in
cognitive psychophysiology. The field needs precise quantitative models for
evaluating chronometric and psychophysiological measures. One cannot inter-
pret these measures fruitfully without making some specific theoretical as-
sumptions about the temporal properties and products of mental processes.
Such assumptions also have a cost associated with them; they must be tested
as best possible along the way.

Variability is a way of life. Models of human information processing and its
psychophysiological substrates must accomodate the fact that reaction-time
and ERP data are inherently variable. This variability results, at least in part,
from stochastic processing components that play an integral role in task
performance. These components have to be characterized thoroughly in any
successful modeling effort.

Average at your own risk. Because chronometric and psychophysiological
measures may contain both systematic variability and noise, one cannot
necessarily handle them simply by averaging data across trials. Such averaging
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is a two-edged sword. In some cases, it will attenuate the contributions of the
noise, but in others, it will also introduce undesirable biases as well. A partial
solution for the problem is to examine the detailed forms of distributions
associated with ERP component latencies and overt reaction times.

Subtraction methodology opens Pandora’s Box. Given that human perfor-
mance is highly context dependent, ancillary mental processes may change
significantly across task conditions, making it impossible to obtain exact
estimates of individual stage durations by comparing results from one condi-
tion versus another. Failure to heed this warning will breed a host of
bedeviling results.

No pain, no gain. Even with thoughtful experimentation and incisive theo-
retical analyses, some frustrations and setbacks are inevitable. Studying the
dynamics of cognition and action is not “a piece of cake,” as mental
chronometry has already proven. Yet out of the struggle, meaningful progress
can emerge through persistent research efforts. So, like mental chronometry
and Timex watches, cognitive psychophysiology should gird itself to take a
licking and keep on ticking.
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