Published in A. Miyake and P. Shah, Eds. (1999).

Models of Working Memory: Mechanisms of Active Mainterance

and Control, New York: Cambridge University Press.

Insights into Working Memory from the Perspective
of the EPIC Architecture for Modeling Skilled

Perceptual-Motor and Cognitive Human

Performance

DAVID E. KIERAS, DAVID E. MEYER,
SHANE MUELLER, AND TRAVIS SEYMOUR

FIVE CENTRAL FEATURES OF THE THEORY

Computational modeling of human perceptual-motor and cognitive per-
formance based on a comprehensive detailed information-processing
architecture leads to new insights about the components of working
memory. To illustrate how such insights can be achieved, a precise pro-
duction-system model that uses verbal working memory for performing
a serial memory span task through a strategic phonological loop has
been constructed with the Executive-Process/Interactive-Control (EPIC)
architecture of Kieras and Meyer. EPIC is characterized by five central
features that may be compared and contrasted with those of other theo-
retical frameworks in this volume, These features include:

(1) Formal implementation with multiple component mechanisms for
perceptual, cognitive, and motor information processing (cf.
Barnard, Chapter 9; Lovett, Reder, & Lebiere, Chapter 5; Young &
Lewis, Chapter 7; Schneider, Chapter 10). '

(2) Representation of procedural knowledge in terms of a production
system whose condition-action rules are all applied simultaneously
and repeatedly during the cyclic operation of a central cognitive
processor (cf. Lovett et al.,, Chapter 5; Young & Lewis, Chapter 7;
O'Retilly, Braver, & Cohen, Chapter 11).

(3) Executive control procedures that schedule task activities efficiently
and coordinate the use of limited-capacity peripheral perceptual-
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motor processors (cf. Baddeley & Logie, Chapter 2; Cowan, Chapter
3; Engle, Tuholski, & Kane, Chapter 4).

(4) Explicit simulations that accurately account for quantitative behav-
ioral data (cf. Lovett et al., Chapter 5; Young & Lewis, Chapter 7).

(5) Relatively parsimonious implementation (cf. Lovett et al., Chapter 5;
Young & Lewis, Chapter 7; Schneider, Chapter 10; O'Reilly et al.,
Chapter 11).

During the past several years, we have been developing a comprehensive the-
oretical framework for symbolic computational modeling of skilled percep-
tual-motor and cognitive performance (Kieras & Meyer, 1994, 1995, 1997;
Kieras, Wood, & Meyer, 1997; Meyer & Kieras, 1992, 1994, 1997a, 1997b,
1999). A principal objective of our research is to formulate precise, detailed,
computational models of performance in realistic multiple-task situations
such as aircraft-cockpit operation, air-traffic control, and human-computer
interaction. Through such modeling, it may be possible to improve the
designs of person-machine interfaces, the selection of personnel, and the
content of training programs that will facilitate performance significantly.

Because cumulative scientific progress requires “starting simple” and grad-
ually dealing with more and more complex phenomena, our research has
focused initially on the performance of relatively elémentary tasks. For exam-
ple, we have spent considerable effort on modeling performance under the
psychological refractory period (PRP) procedure, a basic dual-task paradigm
that requires people to perform two discrete choice-reaction tasks concur-
rently. Some of our other related research has entailed modeling the concur-
rent performance of discrete choice-reaction and continuous visual-manual
tracking tasks. In most (though not all) cases, the load imposed by these tasks
on working memory has been light.! Thus, the components that mediate
working memory in our theoretical framework have not required extensive
elaboration yet. Nevertheless, it is clear that to thoroughly model the perfor-
mance of complex tasks like aircraft-cockpit operation and air-traffic. control,
we must take the contributions and limitations of working memoty more
fully into account.

Such further treatment of working memory in the context of a practical
computational-modeling project has much to recommend it. We have found
previously that formulating computational models to account for substantial
sets of empirical data can provide deep and surprising new insights about
human information processing and major phenomena associated with it. On

! One important exception involves models that we have formulated to account for data col-
lected by Ballas, Heitmeyer, and Perez (1992a, 1992b), who studied the concurrent perfor-
mance of tactical-decision and visual-manual tracking tasks under conditions similar to
those in aircraft cockpit operations, where an operator’s global “situation awarerness” plays
a key role (cf. Graves, 1997; Gugerty, 1997).
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occasion, such insights may directly contradict prevailing theoretical beliefs;
for example, the belief that there is an immutable structural response-selec-
tion bottleneck in the human information-processing system (Pashler, 1994;
Welford, 1967) has been refuted by some of our discoveries. Similarly, it may
be anticipated that formulating more precise computational models for vari-
ous diverse mechanisms of working memory will yield additional insights.

Toward this end, we take “working memory” to encompass the entire
ensemble of temporary stored codes, knowledge representations, and proce-
dures whereby information is maintained, updated, and applied for perform-
ing perceptual-motor and cognitive tasks. Our current definition is consistent
with the seminal use of “working memory” by Miller, Galanter, and Pribram
(1960), who pioneered the theoretical discussion of this term. Our definition is
also, by and large, consistent with those of other contributors to the present
volume.

More specifically, this chapter considers working memory from the per-
spective of a particular architecture for characterizing the human informa-
tion-processing system. Such architectures are essential to construct because
they provide theoretical foundations and sets of mechanisms for human cog-
nition and action, through which veridical computational models of perfor-
mance can be formulated for specific tasks. In accord with the proposals made
by Anderson (1976) and by Laird, Rosenbloom, and Newell (1986), the con-
struction of information-processing architectures has become acknowledged
as a fundamental theoretical approach for cognitive science and experimental
psychology (Newell, 1990). This approach synthesizes multiple basic con-
cepts, subsuming a variety of “micro” models and mechanisms into a single
coherent whole. When an information-processing architecture is imple-
mented computationally, its implications and applicability can be explored
rigorously. The progress of serious cognitive theorizing requires the develop-
ment of more comprehensive and veridical architectures, as exemplified by
several contributions to this volume (e.g., Lovett, Reder, & Lebiere, Chapter 5;
Young & Lewis, Chapter 7; Schneider, Chapter 10).

In what follows, the Executive-Process/Interactive-Control (EPIC) architecture
that we have constructed for modeling cognition and action is described and
applied to address issues about working memory. EPIC incorporates many
recent theoretical and empirical results concerning human performance in
the form of a simulation software system. Using EPIC, a computational model
can be formulated to represent procedures for performing a complex multi-
modal task with an explicit set of production rules. When an EPIC model is
supplied with external task stimuli, it executes the procedures in whatever
way the task requires, thereby emulating a human who performs the task, and
generating predicted actions in simulated real time.

EPIC is an architecture devoted explicitly to constructing models of skilled
performance; it is not yet a learning system per se, and so at this time has a
different scope than do the theoretical frameworks of some other contributors
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(e.g., Young & Lewis, Chapter 7; Schneider, Chapter 10) to this volume.
Instead, EPIC’s current purpose is to characterize the perceptual and motor, as
well as cognitive, constraints on people’s ability to perform various tasks.
Consistent with this purpose, the next section describes the components of
the EPIC architecture. Then we introduce an instructive computational model
based on EPIC to account for results from representative studies of verbal
working memory.

The EPIC Architecture

Figure 6.1 outlines the overall organization of the component processors and
memory stores in the EPIC architecture. At this level, EPIC resembles some
previous theoretical frameworks for human information processing.
Nevertheless, it constitutes a new synthesis of concepts and empirical resuits,

being more comprehensive, detailed, and veridical than its predecessors.

We have designed EPIC to combine mechanisms for cognitive information
processing and perceptual-motor activities with procedural task analyses of
skilled performance. Our efforts complement production-system theories
such as CCT (Bovair, Kieras, & Polson, 1990), ACT-R (Anderson, 1993; Lovett
et al., Chapter 5, this volume), and Soar (Laird et al., 1986; Young & Lewis,
Chapter 7, this volume). EPIC has a central cognitive processor surrounded by
peripheral perceptual and maotor processors. Applying EPIC to model the per-
formance for a task requires specifying both the production-rule program-
ming of the cognitive processor and the relevant operations of the perceptual
and motor processors. When an EPIC model interacts with a simulated task
environment, it produces an explicit sequence of overt serial and parallel
actions required to perform the task, just as a human performer does. The pro-
cedural task analysis embodied in an EPIC model is general to a class of task
scenarios (cf. John & Kieras, 1996).

The software for implementing EPIC is currently written in Common LISP,
All EPIC models described in this chapter and elsewhere have actually been
implemented and run to generate reported simulation results. EPIC really
works!2

The EPIC framework includes not only software modules for simulating a
human performer, but also provisions for simulating interactions of the per-
former with external equipment. For example, the left side of Figure 6.1
shows a simulated task environment, where virtual devices such as a display
screen and keyboard provide the “physical” interface to a simulated per-
former on the right. During simulations with EPIC, the task-environment
software module assigns physical locations to the interface objects, and it

2Qur simulation software and a technical description of .EPIC are available at
ftp.eecs.umich.edu/people/kieras/EPICarch.ps.
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Figure 6.1. Overview of the EPIC architecture (adapted from Meyer & Kieras, 1997a).

generates simulated visual and auditory events in response to the simulated
performer’s behavior.

Within the EPIC architecture (Figure 6.1), information flows forward from
peripheral sensors, through perceptual processors, to a cognitive processor
(with a production-rule interpreter and working memory), whose outputs
control motor processors that move peripheral effectors. The architecture
also has muiltiple feedback pathways. Its degree of perceptual-motor develop-
ment is substantially greater than found previously in other popular infor-
mation-processing architectures such as the Model Human Processor (Card,
Moran, & Newell, 1983), ACT-R (Anderson, 1993; Lovett et al., Chapter S,
this volume), and Soar (Laird et al., 1986; Newell, 1990; Young & Lewis,
Chapter 7, this volume).

EPIC has separate perceptual processors with distinct temporal properties
for several major sensory (e.g., visual, auditory, and tactile) modalities. There
are also separate motor processors for several major motor (e.g., ocular, man-
ual, and vocal) modalities. Feedback pathways from the motor processors
and effectors to partitions of working memory help coordinate multiple-task
performance. :
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The declarative/procedural distinction made by “ACT-class” architectures
(e.g., Anderson, 1976, 1993; Lovett et al,, Chapter 5, this volume) is embodied
in EPIC with separate permanent memory stores for procedural knowledge
(production rules) and declarative knowledge (propositions). EPIC's working
memory contains all of the temporary information needed for and manipu-
lated by a model’s production rules, including control items such as task goals
and sequencing indices, along with representations of received sensory inputs
and selected motor outputs. These various types of information are stored in
separate working memory partitions such as auditory working memory, visual
working memory, the control store, and the tag store.

Under EPIC, there are three different types of numerical parameter: stan-
dard, typical, and free. The numerical values of standard parameters (e.g., the
mean cycle duration of the cognitive processor) stay the same across all appli-
cations of the architecture. The numerical values of typical parameters (e.g.,
the time required to detect a visual stimulus) are derived from prior results in
the literature on human performance (e.g., Atkinson, Hernstein, Lindzey, &
luce, 1988; Boff, Kaufman, & Thomas, 1986); we set them on an a priori basis
before simulations with an EPIC model are run, but they may change across
different task contexts. The numerical values of free parameters also may
change across different task contexts; they are estimated iteratively by deter-
mining which values maximize the goodness-of-fit between simulated and
empirical data. We hope that through further modeling experience, the free

parameters in EPIC will become standard or typical ones, thereby increasing
our models’ predictive power. Nevertheless, even now, the predictive power of
our models is substantial.

Perceptual Processors

EPIC has perceptual processors for the visual, auditory, and tactile sensory
modalities. They are simple “pipelines” through which information feeds for-
ward asynchronously in parallel. Each stimulus input to a perceptual proces-
sor may yield multiple symbolic outputs that are deposited in working
memory as time passes. In addition, EPIC’s tactile perceptual processor trans-
mits feedback from effector organs to working memory. This can be impor-
tant for coordinating performance of multiple tasks. Further details about
EPIC’s visual perceptual processor appear in Kieras and Meyer (1997). For
now, we focus on the auditory perceptual processor, which is used extensively
by the present EPIC computational model of verbal working memory.

AUDITORY PERCEPTUAL PROCEsSOR. The auditory perceptual processor
receives inputs from EPIC's ear and sends outputs to auditory working mem-
ory, where representations of stimulus sounds are stored. For example, when
the auditory perceptual processor receives a short tone signal, it may first pro-
duce a symbolic item that corresponds to the onset of the tone (standard
delay: 50 ms), then at a later time, an item that identifies the frequency of the
tone (typical delay: 250ms), followed by an item that corresponds to the
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tone’s offset (standard delay: 50 ms). Later, such items simply disappear from
auditory working memory in an all-or-none manner after stochastic decay
times whose magnitudes are consistent with typical durations of temporary
stored auditory information (Balota & Duchek, 1986; Cowan, 1984; Cowan,
Lichty, & Grove, 1990; Eriksen & Johnson, 1964; Watkins & Todres, 1980).

Following proposals by some previous investigators (e.g., Longoni,
Richardson, & Aiello, 1993), the auditory perceptual processor codes external
(overt) speech in the form of items for individual words and word sequences,
which then go to auditory working memory just as coded information about
tones does. We assume that specific amounts of time are required to identify
individual words and to put their representations in working memory (typical
delay: 150 ms). The auditory perceptual processor can also receive speech
inputs from the vocal motor processor; such inputs, whose source is internal
(covert), have a distinct code that differentiates them from speech inputs
whose source is external (overt).

REPRESENTATION OF SERIAL ORDER. To represent the serial order of speech
inputs, EPIC’s auditory perceptual processor produces items that contain
abstract symbolic tags pointing to the previous and to the next items of a
sequence. Using these tags, a set of production rules can step through the
stored items in auditory working memory for a series of spoken words, pro-
cessing them one after another to complete a given task. Spoken items that
come from external or internal sources are kept in separate source-specific
sequential chains.

Of course, the format that we have chosen initially for representing the ser-
ial order of speech in EPIC is rather rudimentary and may require elaboration
to explain or predict certain complex data. Nevertheless, there are precedents
and virtues to recommend our chosen format (e.g., see Rumelhart &
McClelland, 1986; Wicklegren, 1969). If and when the need arises, this format
may be elaborated so that it accommodates hierarchical structures as well as
sequential chaining (cf. Anderson & Matessa, 1997; Estes, 1972; Healy, 1974;
Gordon & Meyer, 1987; Henson, Norris, Page, & Baddeley, 1996; Lashley,
1951; Shiffrin & Cook, 1978).

Cognitive Processor

EPIC’s cognitive processor is programmed in terms of production rules and
it uses the Parsimonious Production System (PPS) interpreter (Bovair et al.
1990). PPS production rules have the format (<rule-name> IF <condition>’
THEN <actions>). The rule condition refers only to the contents of the pro-
duction-system working memory. The rule actions can add or delete items in
working memory, and also send commands to the motor processors.

cycLICc OPERATION. The cognitive processor operates cyclically, consistent
with known periodicities of the human information-processing system
(Callaway & Yeager, 1960; Kristofferson, 1967; Ray, 1990). At the start of
each cycle, the contents of working memory are updated with new outputs

N
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from the perceptual processors and the actions of applicable rules on the
preceding cycle. At the end of each cycle, commands are sent to the motor
Processors.

The cognitive-processor cycles are not synchronized with external stimulus
and response events. Inputs from the perceptual processors are accessed only
intermittently, when the production-system working memory is updated at
the start of each cycle. The cognitive processor typically has a cycle time that
is stochastic, with a mean of 50 ms (cf. Young & Lewis, Chapter 7, this vol-
ume; Newell, 1990). All other time parameters in the system are scaled pro-
portionately with respect to the current randomly sampled cycle time. The
variance of the cycle-time distribution is chosen to produce an approximately
20% coefficient of variation for simple reaction times, corresponding to typi-
cal observed values.

PRODUCTION-SYSTEM PARALLELISM. Most traditional production-system
architectures let only one production rule be fired at a time, and only its
actions are executed then (e.g., Anderson, 1976, 1993; Lovett et al., Chapter S,
this volume). Under these systems, when more than one rule has conditions
that match the current contents of working memory, some kind of conflict-
resolution mechanism must choose which rule to fire. Soar (Laird et al., 1986;
Young & Lewis, Chapter 7, this volume) is perhaps the most complex case, in
that its production rules only propose operators to apply, and many candidate
operators can be proposed at once, but then a separate process must decide
which particular candidate to apply.

In contrast, the Parsimonious Production System of EPIC’s cognitive
processor has a very simple policy: on each processing cycle, PPS fires all rules
whose conditions match the current contents of working memory, and PPS
executes all of their actions. Thus, EPIC models have true parallel cognitive
processing at the production-rule level; multiple “threads” or processes can be
represented with sets of rules such that they all run concurrently. Reaction-
time data from basic multiple-task performance, which demonstrate the
absence of a structural cognitive response-selection bottleneck, strongly sup-
port our assumptions about the cognitive processor (Meyer et al., 1995;
Schumacher et al., 1997, 1998).

Our theoretical approach with respect to the nature of information-pro-
cessing limitations is also a matter of scientific tactics: We make some radi-
cally simple assumptions and then explore their consequences. EPIC starts
with obvious inherent limitations of human memory and perceptual-motor
mechanisms; it incorporates other more elaborate and debatable constraints
only when serious failures at accounting for empirical data compel us to do
so. In part, such extreme parsimony differentiates us from other contributors
to this volume (cf. Lovett et al., Chapter 5; Young & Lewis, Chapter 7;
Schneider, Chapter 10; O’Reilly, Braver, & Cohen, Chapter 11). Perhaps
because it forgoes elaborate incorrect assumptions, our approach has fared
reasonably well thus far.

EPIC and Working Memory 191

Working Memory

As mentioned already, the working memory for EPIC’s cognitive processor
does, of necessity, have several partitions. Taken together, their contents pro-
vide EPIC computational models with a basis for maintaining overall situa-
tion awareness under both laboratory conditions and real-world
circumstances where “cognition in the wild” occurs (e.g., Graves, 1997;
Gugerty, 1997).

MODAL WORKING MEMORY STORES. Three partitions of working memory
are dedicated to specific perceptual modalities. These include visual, auditory,
and tactile stores that contain information from the respective perceptual
processors. Items persist there in an all-or-none manner for durations that
depend on the types of information involved. EPIC also has a motor working
memory that contains information about the current states of the motor
processors. '

PRODUCTION-SYSTEM MEMORY STORES. Two other partitions of working
memory are production-system memory stores. These include a control
store and a tag store. They contain information defined only in terms of the
contents of production rules. By using them together with EPIC’s modal
working memory stores, motor processors, and perceptual processors, the
cognitive processor may implement other working memory mechanisms
such as a phonological loop (cf. Baddeley, 1986; Baddeley & Logie, Chapter
2, this volume). :

Control Store. In the control store are items that represent current task goals
and procedural steps for accomplishing them. Under PPS, such items are
treated just like other types of information in working memory, and so they
can be freely manipulated by rule actions. This is crucial for modeling multi-
ple-task performance, because it enables the production rules of an executive
process to coordinate the progress of task subprocesses.

The control store contains several types of item: (a) goals, which appear in
the conditions of rules that accomplish a particular task; (b) steps, which cause
rules to fire in a specific sequence; (c) strategy items, which enable or disable
rules for implementing alternative versions of a task strategy; (d) status items,
which represent the current states of various subprocesses, such as indicating
what ones are now under way. Items in the control store have meaning only
with respect to the production rules that test for, add, or delete them; they are
not related by an “external semantics” to overt perceptual or motor events.

For now, the control store is assumed to have unlimited capacity and dura-
tion (cf. Lovett et al., Chapter 5, this volume). Thus, in practice, the number
of items that it contains at any moment depends only on which task
processes are being executed. The executive and task processes of our models
typically delete control-store items whenever they are no longer needed. We
await future theoretical and empirical results to determine whether the con-
trol store should have more constrained limits.
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Tag Store. The tag store contains items that “label” other items in the
modal (i.e., perceptual and motor) working memories. Such labeling assigns
particular roles to modal working memory items referenced by the conditions
and actions of production rules. For example, a production rule might update
the tag store with a new tag for an object in visual working memory, labeling
it as “the stimulus.” This would specify which object is “the stimulus” to be
checked subsequently when the conditions of other rules are tested for their
truth values.

Under EPIC, each item in the tag store refers to only one item in a modal
working memory store. The contents of a tag include only internal symbols;
like control-store items, tags have no “external semantics.” As for the control
store, we likewise assume that the capacity and duration of the tag store are
unlimited, and that executive or task processes delete tag items when they are
no longer needed. Again we await future theoretical and empirical results to
determine whether the tag store should have more constrained limits.

ILLUSTRATIVE PRODUCTION RULE. The following production rule illus-
trates some of EPIC’s different possible working memory items and produc-
tion-rule actions:

(EXAMPLE-RULE:

IF
( (GOAL DESIGNATE TARGET)

(STRATEGY MAKE POKE IMMEDIATELY)

(STEP MAKE POKE-RESPONSE)

(TAG ?0OBJECT IS STIMULUS)

(VISUAL ?0BJECT COLOR RED)

(NOT (VISUAL ?2? SIZE LARGE))

(STATUS PERF-TACTICAL RESPONSE-PROCESS HAS EYE)

(MOTOR MANUAL PROCESSOR FREE))

THEN
( (SEND-TO-MOTOR MANUAL PERFORM POKE (LEFT INDEX) ?OBJECT)
(ADDDB (GOAL WATCH-FOR DESIGNATION-EFFECT))
(DELDB (STEP MAKE POKE-RESPONSE))
(ADDDB (STEP WAIT-FOR WATCHING-DONE)))

The function of this rule is to touch a small red object on a display screen, des-
ignating it as a target by poking it with the left index finger. Embedded in the
rule’s condition are multiple expressions that must be true conjunctively with
respect to the contents of working memory: here the goal (control-store item)
is to designate a target; the strategy (control-store item) is to make the poke
movement immediately; the current procedural step (control-store item) calls
for making a poke movement; a certain visual object has been tagged as “the
stitnulus” (tag-store item); the tagged stimulus object (visual working memory
item) is red; no large object is in view (i.e., visual working memory lacks any
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items about “large” objects); the process responsible for making the poke has
a status (control-store item) that enables it to move EPIC’s eye; and the state
of the manual motor processor (control-store item) indicates that it is free to
accept movement commands. If and when EPIC’s various working memory
partitions contain all requisite items for matching this rule’s condition, then
one of the rule’s actions will command the manual motor processor to make
a poke movement with the left index finger at the stimulus object. Also, the
rule’s other actions will establish a new subgoal (control-store item) to be
accomplished next, delete the current step note, and add a note (control-store
item) for the next step.

Motor Processors

EPIC has separate motor processors for moving the hands, eyes, and speech
articulators. All of them operate simultaneously. To operate a motor processor,
the cognitive processor sends it a command that contains the symbolic name
for a desired type of movement and its relevant parameters. Then the motor
processor produces a simulated overt movement of its effector, achieving the
specified temporal and spatial characteristics for this movement. Many fur-
ther details about movement representation, preparation, and execution by
EPIC’s ocular and manual motor processors appear in Kieras and Meyer.
(1997). For now, we focus on the vocal motor processor, because it is espe-
cially relevant to the present EPIC model of verbal working memory.

vocaL MoTtor PROCESsOR. EPIC’s vocal motor processor can produce
either overt or covert spoken words, based on commands received from the
cognitive processor, which provides symbolic information about the desired
utterance’s style and content. Each spoken word is then sent as an input to
the auditory perceptual processor (Figure 6.1). For overt speech, we assume
that actual sound production is delayed by about 100 ms after articulatory
initiation and continues for an amount of time that depends on the number
of syllables in each spoken word, as well as other relevant vocal parameters.
Overt and covert speech are assumed to be produced motorically at essentially
the same rate, consistent with empirical data (Landauer, 1962). During vocal-
ization, an additional style parameter may specify intonation, acoustically
marking each component word of a sequence as starting, continuing, or end-
ing the sequence. A judicious combination of the vocal motor processor, audi-
tory perceptual processor, and certain forms of working memory, operated
through appropriate production-rule programming, may be used to construct
EPIC models that have a plausible and precisely specified phonological-loop
mechanism (cf. Baddeley & Logie, Chapter 2, this volume).

An EPIC Computational Model for Verbal Working Memory

The remainder of this chapter illustrates how EPIC can be applied for under-
standing and modeling human performance of tasks that involve intensive-
use of verbal working memory. For now, we focus on one prototypical case,
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the serial memory span task (Miller, 1956). In what follows, an EPIC compu-
tational model is presented to account quantitatively for representative data
from this task and to reach new insights about how working memory works.

Our present EPIC model incorporates a phonological-loop mechanism
that, in some but not all respects, resembles ones proposed by previous theo-
rists (e.g., Atkinson & Shiffrin, 1968; Baddeley & Hitch, 1974; Baddeley &
Logie, Chapter 2, this volume; Schweickert & Boruff, 1986; Sperling, 1967;
Waugh & Norman, 1965).3 For the sake of veracity and parsimony, we have
implemented the phonological loop with EPIC’s preexisting auditory working
memory and vocal motor processor, which had been incorporated previously
to model other types of real-time performance (e.g., Kieras et al.,, 1997).
During covert verbal rehearsal, EPIC’s vocal motor processor subvocalizes to-
be-remembered items sequentially, relying on the chained representation for-
mat described earlier. This subvocalization creates representations of items in
auditory working memory that disappear after a time, but that meanwhile
can be used to vocalize the items again either covertly during further
rehearsal, or overtly during final recall.

The total capacity of EPIC’s phonological loop depends on the durations of
items in auditory working memory and on the rate of subvocalization

~achieved with the vocal motor processor. This dependence is plausible

because it stems from obviously required architectural constraints on human
information processing. Consistent with our “minimalist” theoretical
approach to architecture specification, we forgo making additional gratuitous,
strong a priori assumptions about prevailing capacity limitations on working
memory. Specifically, at present there is no assumed upper bound on the
number of items that EPIC’s auditory working memory may contain simulta-
neously. Nor does EPIC - unlike alternative theoretical frameworks — assume
the existence of limited-capacity graded activation for items in its working
memory stores (cf. Anderson & Matessa, 1997; Just, Carpenter, & Hemphill,
1996; also, in this volume, see Engle et al., Chapter 4; Lovett et al., Chapter 5;
Schneider, Chapter 10; O'Reilly et al., Chapter 11). '

Serial Memory Span Task

To facilitate the present theoretical endeavor, the version of the serial
memory span task on which we focus now involves discrete trials with a

3 We call the loop “phonological” to be consistent with terminology used by other authors
(e.g., Baddeley & Logie, Chapter 2) in this volume. However, our use of this term is not
meant to imply that the items in the loop have abstract phonological representations as
defined by formal linguists (e.g., Akmajian, Demers, & Harnish, 1979). For present pur-
poses, the items’ representations may be more aptly called “auditory” and “articulatory.”
Thus, the mechanism described here may also be called an “articulatory loop,” a term used
frequently by past researchers (e.g., Baddeley et al., 1984; Burgess & Hitch, 1992; Gupta &
MacWhinney, 1995). It remains an open question whether the items in the human articu-
latory loop have abstract “phonological” representations.
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generic experimental design. This design has been a popular one (e.g., see
Baddeley, Thomson, & Buchanan, 1975; Longoni et al., 1993; Standing, Bond,
Smith, & Isley, 1980), and it typifies the studies whose empirical results are fit
here with our EPIC model of verbal working memory. On each trial of these
studies, a sequence of several (e.g., more than one but less than 10) words was
presented auditorily at a constant moderate rate. After the last word of the
sequence, which typically contained somewhere in the range of three to eight
words, there was a recall signal, and a participant attempted to recall the pre-
sented words in their original order. Ample time (e.g., 15 s) was allowed for
recall. Then a new trial began. For each trial, the presented words were drawn
randomly from a small pool whose individual members were used repeatedly
across trials but at most only once within a trial.# The participant’s attempted
recall on a trial was scored as being correct if and only if all of the presented
words were recalled in their original order. The dependent variable was the
percentage of trials on which correct recall occurred.

Under conditions similar or identical to these, it has been found that sev-
eral independent variables affect percent correct recall systematically. The
observed effects include the following:

SEQUENCE-LENGTH EFFECT. Longer word sequences (i.e., ones that contain
more words) are less likely to be recalled correctly than are shorter sequences
(e.g., Baddeley et al., 1975).

ARTICULATION-TIME EFFECT. Sequences that take more time to articulate
are less likely to be recalled correctly than are sequences that take less time
to articulate (e.g.,, Baddeley et al., 1975; Cowan et al., 1992; Gupta &
MacWhinney, 1995; Longoni et al., 1993; Schweickert, Guentert, & Hersberger,
1990).

PHONOLOGICAL-SIMILARITY EFFECT. Sequences of phonologically similar
words are less likely to be recalled correctly than are sequences of dissimilar
words (e.g., Conrad & Hull, 1964; Longoni et al., 1993; Schweickert et al.,
1990).

ARTICULATORY-SUPPRESSION EFFECT. Recall is less likely to be correct
when participants perform a concurrent secondary task that precludes subvo-
cal rehearsal than when they do not (e.g., Baddeley, Lewis, & Vallar, 1984;
Levy, 1971; Longoni et al., 1993).

Our present EPIC model accounts quantitatively for such effects, using par-
simonious plausible assumptions. In so doing, it yields instructive insights
about the true properties of human auditory working memory, vocal motor
processing, and the phonological loop. Insights about possible cognitive con-
trol strategies for performing the serial memory span task are also provided.

4 This procedure for constructing the word sequences helps ensure that the task Is performed
simply on the basis of phonological-loop mechanisms rather than graded levels of activa-
tion in long-term memory, as some other theorists (e.g., Anderson & Matessa, 1997; Lovett
et al., Chapter 5, this volume) have assumed.
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Architectural Iinplementation of EPIC Model

Implementing our present EPIC model required relatively minor exten-
sions to a previous version of the architecture (Kieras & Meyer, 1997). For this
implementation, we gave EPIC’s vocal motor processor a new subvocalization
style with prosodic markers. Furthermore, a new motor-perceptual connec-
tion was introduced so that covert speech outputs could be sent from the
vocal motor processor to the auditory perceptual processor, which recognized
them and put their symbolic representations in auditory working memory.
The auditory perceptual processor was also elaborated somewhat. As a result,
it produced distinct codes for speech that came from internal and external
sources, Creating separate sequential chains of spoken items, depending on
what the source was. This instantiation of source-specific coding in auditory
working memory is consistent with empirical results from some prior behav-
ioral (Cowan, 1984) and brain-imaging (e.g., Awh et al., 1996; Paulesu, Frith,
& Frackowiak, 1993) studies.

Regarding auditory working memory, we also made six more assumptions:
(1) No limit exists on the number of items stored there. (2) The loss or “decay”
of a stored item is an all-or-none process. (3) Individual stored items have sto-
chastically independent decay times. (4) Decay time has a lognormal distribu-
tion with two parameters, M, the median of the distribution, and s, the
“spread” of the distribution.’ (5) The values of M and s are affected by the
stored items’ phonological simitarity and the type of source (external or inter-
nal) from which they come. (6) Information about serial order is contained in
the stored items as supplementary tags that form an implicit “linked list”
chain structure.

Several virtues of these assumptions should be mentioned. Although
seemingly elaborate, they are essentially minimal ones required to account
accurately for data from the serial memory span task. Results of past studies
support some of them. Evidence for spontaneous decay of stored items in
working memory has been reported (e.g., J. Reitman, 1974; cf. Shiffrin,
1973), consistent with Assumption 2. The probability of item decay
increases as time passes (Brown, 1958), consistent with Assumption 4.
Phonological similarity of stored items can shorten their decay times
(Posner & Konick, 1966), consistent with Assumption 5. Linked-list chain
structures may mediate vocal item-successor naming (Sternberg, 1969) and
word-sequence production (Sternberg, Monsell, Knoll, & Wright, 1978),
consistent with Assumption 6.

$ The lognormal distribution is unimodal and positively skewed over the non-negative real
numbers (Hastings & Peacock, 1975). These features are presumably ones that distributions
of real decay times have. Parameterization with M and s facilitates implementing and inter-
preting effects caused by changes in the lognormal distribution’s central tendency and dis-
persion.
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Furthermore, the task strategy that our EPIC computational model uses to
control its phonological loop for performing the serial memory span task can
be justified on both theoretical and empirical grounds.

Strategy for the Serial Memory Span Tusk

As mentioned already, modeling the performance of any task with EPIC
involves specifying a task strategy and representing it in terms of production
rules. From formulating such specifications, we have found that the strategies
needed for using a phonological loop to perform verbal memory tasks are sut-
prisingly subtle and complex. This is because these tasks require the process-
ing of new stimulus inputs to overlap temporally, in a coordinated fashion,
with ongoing subvocal maintenance rehearsal of previously stored items.

For example, in performing the serial memory span task, each cycle of
rehearsal presumably yields a fresh copy of an item chain, with recently
received items being appended to an immediately prior chain of older items.
Thus, the task strategy must juggle multiple individual items and multiple
chains of items simultaneously in auditory working memory. Although EPIC’s
auditory perceptual processor can extend an item chain automatically as suc-
cessive new inputs arrive, the task strategy still has to keep track of “where” its
component processes are currently working in varlous parts of different sub-
chains. The situation is further complicated by the fact that as time passes,
items can disappear haphazardly from auditory working memory and task
strategies must deal with the problem of lost items. Figure 6.2, shows how this
complexity may be managed under at least some circumstances.

OVERALL TASK STRATEGY. The overall task strategy of our EPIC computa-
tional model for performing the serial memory span task is outlined in Figure
6.2. Here we assume that after a trial starts, several concurrent processes with
complementary (unctions are executed. Together, using the aforementioned
representational formats of EPIC’s auditory perceptual processor, vocal motor
processor, and auditory working memory, these processes orchestrate the con-
struction, rehearsal, and recall of item chains built from items whose source is
either external (overt auditory stimuli) or internal (covert subvocal rehearsal).
Given that EPIC has inherent multiprocessing capabilities, each such process
constitutes a thread of execution, running independently and simultaneously
with other processes during the trial.

ITEM-CHAIN CONSTRUCTION PROCESSES. One of the assumed item-chain
construction processes (upper left part of Figure 6.2) keeps track of an adil-
chain that contains new items received from the external stimulus source.
This involves waiting for each successive external stimulus item to arrive in
auditory working memory and then tagging it as a “new” item for the add-
chain, Another item-chain construction process (upper right part of Figure
6.2) keeps track of a rehearsal chain that contains covert speech inputs pro-
duced by ongoing subvocal rehearsal. This involves waiting for each succes-
sive covert input and tagging it as a “new” item to be included in the next
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Trial Start
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Wait for external stimulus
Tag as new
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+ Wait for covert input

If first external item, tag
as stimulus chain start

1——' if add chain empty,
tag as add chain start

If last external item,
wait for recall signal

Tag as new ———P»

if start item, tag as new
rehearsal chain start
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Wait for rehearsal complete

If item in add chain,
start rehearsal process
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Wait for recall signal and rehearsal complete
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Start recall process

Wait for recall complete

Tén'ninate all threads
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Trial done

Figure 6.2. Flowchart of the overall task strategy used by the present EPIC model of
verbal working memory for performing the serial memory span task. The task strategy
includes concurrent processes for item-chain construction, subvocal rehearsal, and final
recall.

EPIC and Working Memory 199

cycle of rehearsal. The most recent copy of the rehearsal chain and the current
contents of the add-chain then get used during the next rehearsal cycle.

REHEARSAL PROCESS. Under our present EPIC model, a cycle of rehearsal
commences whenever either the first external stimulus item arrives in audi-
tory working memory at the start of a trial, or an immediately preceding
rehearsal cycle has been completed and the current add-chain contains some
further external stimulus items that have not been rehearsed yet (see middle
right part of Figure 6.2). If so, then the rehearsal process is assumed to go
through the steps shown in Figure 6.3.

During a cycle of rehearsal, there are three consecutive phases. First, the
rehearsal process checks whether an initial external stimulus item has arrived
in auditory working memory. If so, then it is sent by the cognitive processor
to the vocal motor processor, which subvocalizes the item and transmits its
covert output to the auditory perceptual processor for recoding and storage in
auditory working memory. Otherwise, each internal item in the most recent
copy of the rehearsal chain is sent successively to the vocal motor processor
and subvocalized once, with the resulting covert outputs again going to the
auditory perceptual processor and auditory working memory for recoding and

storage, respectively. Next, any external stimulus items in the current add-

chain are sent successively to the vocal motor processor and subvocalized so
that internal-item (covert speech) representations of them can be appended
to an updated copy of the rehearsal chain.

Serial-order tags associated with the individual items of these chains are
used by the cognitive processor to govern their order of subvocalization. A
rehearsal cycle terminates when neither the current rehearsal chain nor the
add-chain contains any more items to be subvocalized at the moment. For the
next cycle of rehearsal, the aforementioned item-chain construction
processes specify the new rehearsal chain in auditory worklng memory, tag-
ging its starting item as “new” so that the cognitive processor can access it
appropriately. Individual items and item chains that have been used during
previous rehearsal cycles are tagged as “old” but remain in auditory working
memory, disappearing haphazardly from there as time passes.

A major complexity caused by haphazard item decay is that the rehearsal
process may fail occasionally and unpredictably. Such failures can occur at
any moment during a rehearsal cycle if an item in the current rehearsal chain
or add-chain happens to disappear from auditory working memory before it
has been subvocalized. As a result, rehearsal would be disrupted. Recovery and
graceful continuation after these disruptions require intervention by appro-
priate executive-control procedures of the task strategy.

RECALL PROCESSES. Successful performance of the serial memory span
task also requires a set of final recall processes. We assume that recall starts
after the last external stimulus item has been received, a recall signal has been
detected, and any rehearsal cycle in progress has been completed (see bottom
middle part of Figure 6.2). What happens thereafter involves one or the other
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Rehearsal Start

'

Very first item?

‘ yes

Subvocalize external code ‘

Subvocalize first item in rehearsal chain

————»

. . no
More in rehearsal chain?

yes

Subvocalize next item

|

«——

no \4
) More in add chain?

yes

Subvocalize next add chain item

v L 5

Rehearsal Done

If required auditory item is missing at any point, clean up and exit.

Figure 6.3. Steps in one cycle of the rehearsal process used by the present EPIC model
of verbal working memory for performing the serial memory span task (cf. Figure 6.2).
A rehearsal cycle includes consecutive phases that, when need be, subvocalize the first
external stimulus item on a trial, subvocalize each item of the current rehearsal chain in
auditory working memory, and then subvocalize each item of the current add-chain.

of two recall processes shown, respectively, in the top and bottom panels of
Figure 6.4, which enter the picture when either rehearsal has occurred previ-
ously during the trial or it has not. The latter option must be accommodated
along with the former because on some trials, concurrent articulatory sup-
pression or other ancillary distractions may preclude subvocal rehearsal.
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Recall Start - Rehearsal Used

v

Say first item in rehearsal chain

More in rehearsal chain?

¢yes

Say next item

PR

Recall Done

Recall Start - No Rehearsal

-

Say first item in stimulus chain

More in stimulus chain?

yes

Say next item

L

Recali Done

If required auditory item is missing at any point, clean up and exit.

Figure 6.4. The recall process used by the present EPIC model of verbal working mem-
ory for performing the serial memory span task (cf. Figure 6.2). The top panel shows
steps in recall after prior rehearsal has occurred on a trial, and the bottom panel shows
steps in recall if prior rehearsal has not occurred.

When rehearsal has occurred previously during the trial, the recall process

. attempts to vocalize every item in the most recent copy of the rehearsal chain
(Figure 6.4, top panel). This vocalization proceeds by having the cognitive
processor send the successive rehearsal-chain items one by one from auditory
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working memory to the vocal motor processor for overt output. As a result,
correct recall will occur if, and only if, all of the originally presented items
were incorporated into the most recent rehearsal chain and remain there (i.e.,
do not decay) throughout the recall process.

When no rehearsal has occurred previously during the trial, the recall
process instead attempts to vocalize the stored chain of external-stimulus
items that were input originally by the auditory perceptual processor to audi-
tory working memory (Figure 6.4, bottom panel). This vocalization proceeds
by having the cognitive processor send the successive stimulus-chain items
one by one from auditory working memory to the vocal motor processor for
overt output. As above, correct recall will occur if, and only if, all of these
items are still present in auditory working memory and remain there (i.e., do
not decay) throughout the recall process. Because items in the original stimu-
lus chain have had more time to decay than do items in the most recent copy
of a rehearsal chain, articulatory suppression or other factors that preclude
subvocal rehearsal and thereby force use of the original stimulus chain may
decrease the frequency of correct recall.

If recall based on either the rehearsal chain or original stimulus chain fails
(e.g., because one or more relevant items have disappeared from auditory
working memory), then the recall process cleans up and terminates, returning
control to the overall task strategy. Our present EPIC model makes no attempt
to guess the identities of missing items during recall or to produce them on
the basis of residual information in auditory working memory. This restric-
tion is justifiable for now because we focus exclusively on studies that scored
performance as being correct if and only if the entire sequence of words pre-
sented on a trial was recalled in original order. Under such conditions, ran-
dom and sophisticated guessing contribute negligibly little to obtained data.

Under other conditions, however, various types of supplementary guessing
process may make substantial contributions, especially when credit is given
for partially correct responses. Consequently, we have experimented with
augmented EPIC models that incorporate such processes. These hold promise
of accounting for patterns of data beyond those considered in this chapter
(e.g., shapes of serial-position curves), but they are also much more complex,
so we do not discuss them further here. Nevertheless, in the future, it will be
important for both us and other theorists to develop these models more fully,
because guessing strategies — rather than architectural mechanisms (e.g., resid-
ual graded activation levels; cf. Anderson & Matessa, 1997; also see Engle et
al., Chapter 4, Lovett et al.,, Chapter 5, this volume) — may be primarily
responsible for many ancillary phenomena observed during the performance
of typical verbal working memory tasks.

Applications of EPIC Model

To test the present EPIC model, we have applied it in accounting for results
from two representative studies with the serial memory span task.
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The first of these is a classic study by Baddeley et al. (1975, Exp. 1).
Empirical data from it are especially interesting and challenging because they
embody large interactive effects of sequence length (number of items per
sequence) and articulatory duration (time to vocalize a presented sequence).
This interaction, together with other supplementary results, has led some
investigators (e.g., Schweickert & Boruff, 1986) to infer that items stored in
auditory working memory endure for only about 2s.

The second study whose results are modeled here has been conducted by
Longoni et al. (1993, Exp. 1). Its empirical data are interesting because they
embody interactive effects of phonological similarity and articulatory sup-
pression. These effects led Longoni et al. to infer that

the form of storage responsible for the (phonological similarity) effects must b‘e
functionally independent from the (subvocal rehearsal) processes that are mani-
fested in the effect of (sequence) length. Indeed, the capacity of phonological stor-
age seems to be a constant number of words, regardless of the r}umber pf
phonemes or syllables that they contain, which suggests that the fu.nctlonal. units
of phonological storage are . . . discrete words rather than their constituent

phonemes or syllables. (1993, pp. 13-14)
In what follows, we next discuss Longoni et al. and then Baddeley et al.

The Study of Longoni, Richardson, and Aiello

The generic version of the serial memory span task described earlier was
used in the study by Longoni et al. (1993, Exp. 1).

EXPERIMENTAL DESIGN. On each trial, four auditory Italian words were
presented successively to Italian speakers for subsequent recall in original
order. During presentation of the word sequence and subsequent attempted
recall, the participants either rehearsed the words covertly, or they performed
a secondary articulatory-suppression task, which presumably precluded
covert rehearsal. Subsequent recall attempts were produced in writing so that
when required, articulatory suppression could continue throughout the trial.

Under both the articulatory-suppression and rehearsal conditions, some
word sequences contained two-syllable words, whereas other word seque.nces
contained four-syllable words. As measured by Longoni et al., the mean times
that participants took to vocally articulate the sequences of four-syllable
words were longer than those for the sequences of two-syllable words.
Furthermore, the words in a sequence were either phonologically similar to or
distinct from each other. Across trials, the phonological-similarity and articu-
lation-time factors varied in a quasi-orthogonal manner. Four different pools
of words were used to achieve this manipulation.

Overall, the experiment thus had a 2 (suppression/rehearsal) hy' 2
(short/long articulation time) by 2 (phonologically similar/distinct) fa.ctorlal
design. The inclusion of such multiple factors has important vu'tues?.
However, the absence of more than two levels within each factor also seri-
ously limits the design’s power.
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eMPIRICAL RESULTS. The dark textured bars in the top and bottom panels
of Figure 6.5 show the empirical results from Longoni et al.’s (1993, Exp. 1)
study in terms of percent correct recall (i.e., percentages of trials on which
participants recalled all words in correct order). All three independent vari-
ables had reliable main effects. Articulatory suppression, long articulation
times, and phonological similarity each decreased percent correct recall sub-
stantially. Some reliable interactions also occurred. For example, the effect of
articulation time was much less under the articulatory-suppression (rehearsal
absent) condition than under the nonsuppression (rehearsal present) condi-
tion. In contrast, phonological similarity tended to magnify the articulation-
time effect.

EPIC COMPUTATIONAL MODEL. In applying our EPIC computational
model to account for these results, we decided that it was not necessary to
simulate handwriting for final recall or to simulate articulatory suppression
per se. Instead, we programmed the model’s task strategy simply to suspend
its rehearsal process (Figure 6.3) under the articulatory-suppression condition
and to recall words orally by using the stored traces of items from either inter-
nal (subvocal rehearsal) or external (overt auditory stimuli) sources in audi-
tory working memory, depending on whether or not rehearsal had taken
place. This treatment makes the plausible assumptions that articulatory sup-
pression completely precluded participants’ subvocal rehearsal and that the
model’s vocal rate of recall approximately equaled participants’ actual rate of
written recall. Our simulation of performance by Longoni et al.’s participants
therefore used their reported articulation rates as parameters.

To implement the simulation, we ran the model through Longoni et al.’s
experimental procedure. In response, the model produced a sequence of cor-
rect and incorrect recall attempts. An iterative search was used to identify val-
ues of M and s, the parameters of the item decay-time distributions, that
yielded maximally good fits between simulated and empirical results. Four
pairs of M and s values were identified, including ones respectively associated
with item codes for phonologically similar and distinct words from external
(overt auditory stimuli) and internal (covert rehearsal) sources. In identifying
these values, it was assumed that articulation time and articulatory suppres-
sion did not affect them.

SIMULATION RESULTS. The white bars in the top and bottom panels of
Figure 6.5 show simulation results produced by the present EPIC model. for
Longoni et al. (1993, Exp. 1). We obtained an accurate quantitative account of
the main effects and interactions caused by all three of Longoni et al.’s inde-
pendent variables.

Table 6.1 shows our model’s parameter values for the decay-time distribu-
tions as a function of the items’ phonological similarity and source (external
or internal). The mean decay times that yielded good fits to the empirical

results were longer for phonologically distinct items and for items whose

source was external. These two trends tended to be overadditive. In contrast,
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Figure 6.5. Empirical and simulation results for the study by Longoni, Richardsqn, and
Aiello (1993, Exp. 1). Dark textured bars represent observed percentages of trials on
which serial recall was perfectly correct as a function of short versus long word-
sequence articulation time and articulatory suppression (rehearsal absent) versus non-
suppression (rehearsal present). White bars adjacent to the‘right .of the dark bars
represent corresponding predicted percentages of trials on which serial recall was per-
fectly correct under the present EPIC model of verbal working memory. TQp pangl:
Observed and predicted percentage correct recall with sequences of phonologically d'xs-
tinct words. Bottom panel: Observed and predicted percentage correct recall with

sequences of phonologically similar words.




206 D. E. Kieras, D. E. Meyer, S. Mueller, and T. Seymour
A S

Table 6.1. Parameter Values in EPIC Simulation for Study by Longoni et al. (1993)

Source Type Phonological Status M (mns) s

External Similar 6,625 0.2
Distinct 7,400 0.2

Internal : Similar 4,875 0.5
Distinct 5,500 0.5

Note: M is the median of the lognormal decay-time distribution for items in
auditory working memory; s is the distribution’s spread parameter. The left
two columns of the table indicate the characteristics of the stored items for
which these parameter values were identified. The external source
corresponds to overt auditory stimulation, and the internal source
corresponds to covert vocal rehearsal.

the spread parameters of the decay-time distributions were less for items whose
source was external, and they did not depend on phonological similarity.

THEORETICAL INTERPRETATION. There is a straightforward theoretical
interpretation of these simulation results. Basically our EPIC model’s assump-
tions may be correct! Elaborating the ideas of some previous theorists (e.g.,
Baddeley, 1986), the model provides a neat explanation of the articulatory-
suppression effect. Performance is worse without rehearsal because only the
original traces of external stimulus items are potentially available in auditory
working memory to be recalled. However, following covert rehearsal, recall
also may be based on traces of items generated internally through the model'’s
phonological loop, because the rehearsal process generates fresh copies of
them repeatedly. ,

The model likewise explains the interactive articulation-time and phono-
logical-similarity effects. Item sequences that take more time to articulate are
recalled less well because the rehearsal and recall processes proceed more
slowly through them, and so items are more likely to be lost prematurely from
auditory working memory. Phonologically similar items are recalled less well
because their shorter decay times tend to preclude the rehearsal process from
maintaining them. The articulation-time effect during rehearsal is greater for
phonologically similar items because their shorter decay times make them
disproportionately more likely to get lost during lengthy rehearsal cycles.

Concomitantly, the parameters of the decay-time distributions (Table 6.1)
have an interesting interpretation. Given that different mean decay times
were required for items that had external and internal sources, the present
simulation suggests that source-specific coding does take place in human
auditory working memory. This supports previous claims about multiple
types of auditory working memory codes (Cowan, 1984). Likewise suppofted
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is the claim (Posner & Konick, 1966) that phonologically similar items decay
more quickly than do distinct items.®

TECHNICAL LEssoNs. Our work here also offers some instructive technical
lessons. Although the goodness-of-fit produced by the present simulation was
satisfactory, the data reported by Longoni et al. did not contain enough
degrees of freedom for a completely convincing test. Fitting the EPIC model
involved adjusting six parameters (Table 6.1), including four values of M and
two values of s, whereas the data came from a 2-by-2-by-2 factorial design
with only 8 df. This deficiency highlights a serious limitation of binary facto-
rial designs. Although common in cognitive psychology, such designs are an
“underpowered” source of data, because they yield only nominal-scale infor-
mation about the effects of their independent variables. Future experimenta-
tion instead should use designs that have several levels per factor.

Yet despite these caveats, it would be mistaken to dismiss the initial success
of the present EPIC model as trivial. Our simulation for Longoni et al.’s study
was constrained by the model’s architecture and task strategy. So even with
six free decay-time parameters, there was not arbitrarily great freedom to fit
the data. That the model accounted for the overall pattern of reported factor
effects thus should be taken as an encouraging sign about the model’s theo-
retical value. Further confirmation of this comes in our work with Baddeley et
al.’s (1975, Exp. 1) study.

The Study of Baddeley, Thomson, and Buchanan

Fortunately, Baddeley et al.’s (1975, Exp. 1) classical study had an experi-
mental design with ample power for a strong test of our EPIC model. This
power stemmed from there being an independent variable that had several
levels within it, namely, the number of words per sequence. After we adjusted
the model’s free parameters, numerous degrees of freedom remained in
Baddeley et al.’s data to assess the model’s goodness-of-fit carefully.

EXPERIMENTAL DESIGN. Baddeley et al’s study used the generic serial
memory span task described before. On each trial, either 4, 5, 6, 7, or 8 audi-
tory English words were presented successively to participants for subsequent
recall in original order. The participants always were allowed to rehearse; no
articulatory suppression was required. Subsequent recall attempts were oral.

6 Intriguingly, Longoni et al..(1993, Exp. 1) found that sequences of phonologically similar
words took longer to articulate than did sequences of distinct words. At first blush, this
finding seemed potentially sufficient to explain why the sequences of similar words were
recalled less well. However, a preliminary simulation with our EPIC model revealed that by
itself, the articulation-time difference between similar-word sequences and distinct-word
sequences could not account entirely for the worse recall of the similar-word sequences.
Fitting the data well also required there to be a difference between the mean decay times of
similar and distinct words. Such a discovery illustrates the superiority of precise computa-
tional modeling over informal verbal theorizing for determining what conceptual con-
structs are truly necessary.
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within each sequence, the words took either relatively long or short times to
articulate. Across trials, the number of words per sequence and the sequence’s
articulation time varied systematically. Overall, the experiment thus had a §
(number of words per sequence) by 2 (short/long articulation time) factorial
design. The sequences involving long articulation times were constructed
from a pool of five-syllable words; a pool of one-syllable words was used to
construct the sequences involving short articulation times.”

EMPIRICAL RESULTS. The dark textured bars in the top and bottom panels
of Figure 6.6 show the empirical results from Baddeley et al.’s (1975, Exp. 1)
study in terms of percent correct recall. Both independent variables had reli-
able main effects. As either the number of words per sequence or the sequence
articulation time increased, percent correct recall decreased substantially. A
reliable interaction also occurred between these effects. The number of words
per sequence had a much greater effect for the sequences whose articulation
times were long.

EPIC COMPUTATIONAL MODEL. To account for these empirical results, we
ran our EPIC model through Baddeley et al.’s experimental procedure. In
response, the model produced a sequence of correct and incorrect recall
attempts. A single pair of mean and spread parameter values, identified by
iterative search, was used for the item decay-time distributions: M = 7500 ms;
s=0.238

For the present simulation, we also needed to set the rates at which the
words were vocalized in the sequences that had nominally “short” and
“long” articulation times. Unfortunately, Baddeley et al. (1975, Exp. 1) did
not report these rates. We therefore measured them ourselves by vocalizing
representative word sequences at a crisp, comfortable pace of the sort typi-
cally used during covert rehearsal. The mean rates of vocalization for the
sequences of words with long and short articulation times were measured
respectively to be 804 ms and 419 ms per word. These rates were then used in
our EPIC model.

SIMULATION RESULTS. The white bars in the top and bottom panels of
Figure 6.6 show the simulation results produced by our model for Baddeley et
al. (1975, Exp. 1). We obtained an accurate quantitative account of the main

7 A confounding therefore existed here between number of syllables per word and articulation
time. Nevertheless, more recent research by Baddeley and others, including us, has revealed
that sequence articulation time per se is a crucial independent variable. This finding stands
despite counterobjections by a few investigators (cf. Caplan, Rochon, & Waters, 1992).

8 Because no articulatory suppression occurred in Baddeley et al.’s (1975, Exp. 1) study, it was
not possible to accurately estimate different means and spreads for the decay times of items
from external and internal sources. In this case, we therefore adopted the default assump-
tion that these parameters did not differ as a function of the items’ source. Also, we again
assumed that sequence length and articulation rate did not affect them either. Thus, there
were many fewer free parameters in our simulation for Baddeley et al. than in our simula-
tion for Longoni et al.

EPIC and Working Memory 209

100 -+
Short Words

~
w»
1

Il Observed
O Predicted

Percent Recall
(4]
o
L

N
[4)]
i

4 5 6 7 8
Sequence Length

100
Long Words

~
wn
1

W Observed
[J Predicted

Percent Recall
(6]
o
]

N
w
1

0
4 5 6 7 8
Sequence Length

Figure 6.6. Empirical and simulation results for the study by Baddeley, Thomson, and
Buchanan (1975, Exp. 1). Dark textured bars represent observed percentages of trials on
which serial recall was perfectly correct as a function of sequence length (i.e., the num-
ber of words per sequence). White bars adjacent to the right of the dark bars represent
corresponding predicted percentages of trials on which serial recall was perfectly correct
under the present EPIC model of verbal working memory. Top panel: Observed and pre-
dicted percentage correct recall with sequences that contained short (one-syllable)
words and had short articulation times. Bottom panel: Observed and predicted percent-
age correct recall with sequences that contained long (five-syllable) words and had long
articulation times.

and interactive cffects caused by both the sequence-length and articulation-
time factors. This success occurred even though the present simulation used
many fewer free parameters than there were degrees of freedom in the empir-
ical results.
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THEORETICAL INTERPRETATION. Our EPIC model fit well here because it
aptly characterizes the complementary contributions of various item repre-
sentations, covert subvocal rehearsal, and item decay in auditory working
memory. To do so requires having precisely and veridically specified the task
strategy through which the contents of auditory working memory are man-
aged. It therefore appears that for the serial memory span task, we have suc-
cessfully encompassed several auditory working memory mechanisms and
arrived at a more complete correct description of the human phonological
loop.

Substantive and Methodological Insights Concerning Verbal
Working Memory

From our applications of EPIC to the data of Longoni et al. (1993, Exp. 1)
and Baddeley et al. (1975, Exp. 1), several substantive and methodological
insights concerning verbal working memory have been attained.

DURATION OF ITEMS IN AUDITORY WORKING MEMORY. In each simula-
tion with the present EPIC model, the mean durations of auditory working
memory items were two to four times greater than the 2 s claimed from some
prior studies that have used the serial memory span task (e.g., Baddeley et al.,
1975; Schweickert & Boruff, 1986). Instead, the item durations suggested by
our modeling are more consistent with research on echoic and auditory mem-
ory that has used other types of paradigm, which point toward values around
10 s or greater (e.g., Balota & Duchek, 1986; Cowan, 1984; Cowan et al., 1990;
Eriksen & Johnson, 1964; Watkins & Todres, 1980). What could account for
this conflict? Perhaps previous theorists have neglected to consider how
much executive control might lengthen the time consumed by covert
rehearsal during sequence-presentation intervals when partial chains of mem-
orized items are being constructed and elaborated by task-strategy procedures.
If so, then they would not have realized that items in auditory working mem-
ory must endure for at least as long as such processes take, which - as our
modeling shows - may be substantially longer than the time required to utter
a sequence of items after it has been fully prepared. Attaining such realiza-
tions constitutes a strong incentive for seriously pursuing formal theoretical
approaches.

SOURCE-DEPENDENT CODING. A second insight provided by the present

work is that distinct codes are indeed used in auditory working memory for
itemns that come from external (overt auditory stimulus) and internal (covert
speech) sources. Specifically, we discovered that “imaginal” codes for internal-
source items have shorter and more variable durations than do “literal” codes
for external-source items (Table 6.1). This helps explain some of the complex-
ity that has characterized the past literature on auditory memory (Cowan,
1984).

IMPORTANCE OF TASK STRATEGIES. Like our prior research in other task
domains, the present research further demonstrates the crucial importance of
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precisely characterizing task strategies. For understanding worki.ng memory,
this characterization is necessary even in seemingly simple cases l‘nke the.senal
memory span task. The executive control needed to perform th\s. task is not
trivial, involving several temporally overlapped threads of processing. Had we
also chosen to model the sophisticated guessing processes that presumably
contribute to partially correct recall attempts, the importance of task srtrate-
gies would have been even more apparent. Future theorizing and ex?enmen-
tation about working memory therefore need to take task strategies much
more seriously (cf. W. Reitman, 1970).

General Discussion

An important exercise for facilitating future research is to compare and con-
trast alternative theoretical frameworks being used currently to characterize
human working memory. By doing so, commonaliti‘es amor.lg these frame-
works may be identified, and as a result, theoretical integration m?y be fos-
tered. Also, to the extent that there really are funflament:_il‘ differences
among frameworks, focusing on them may yield crucxal.en?pmcal tests.for
determining which theories are most viable. Toward achlevu‘\g th.ese ob]e'c-
tives, contributors to the present volume have been posed with eight d?mg-
nated questions. We are now in a position to answer them on the basis of

EPIC.

Answers to Eight Designated Questions
Table 6.2 summarizes our answers to the eight designated questions.

Table 6.2. Brief Summary of Answers to the Eight Designated Questions

(1) Basic Mechanisms and Representations in Working Mem(?ry
Information is encoded symbolically and put in modal (e.g., auditory a.nd
visual) working memory stores by EPIC's perceptual and motor processors.
Production rules in the cognitive processor, together with the pferceptual-
motor processors, are used to maintain and apply this information for .task.
performance. The cognitive processor also uses production rules to mz.untam
and apply symbolic information in the control and tag stores of working
memory, which help direct the flow of processing.

rol and Regulation of Working Memory .

@ Flirl?lz(l:l::‘ 1:0 general'-pg‘:pose “central executive” separate from other.archltec-
tural components. Rather, working memory is managed by task—smﬁc e).(;c;l
utive control processes. With respect to the particular task(s) for wh.lch s?u e
performance is being modeled, executive control processes are specified in
terms of production rules that update, malntain, and use the contents of‘

i to complete the task(s) efficiently.
working memery b continued
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Table 6.2, continued

(3) The Unitary Versus Non-Unitary Nature of Working Memory
Working memory in EPIC consists of multiple separable subcomponents.
Some of these subserve the temporary storage and on-line use of symbolic
declarative knowledge, such as perceptual (visual, auditory, tactile), motoric
(ocular, manual, vocal), and procedural control (goals, task priorities, process
status) information. Other subcomponents subserve the application of proce-
dural (production rule) knowledge that implements executive and task
processes. Interactions among these subcomponents occur through opera-
tions by EPIC's cognitive, perceptual, and motor processors.

(4) The Nature of Working Memory Limitations
The philosophy of modeling embodied in EPIC aspires to parsimonious and
plausible assumptions about human information processing. Accofdingly, the
limits of EPIC’s working memory capacity come mainly from two especially
justifiable sources: finite processing speed and decay of symbolic codes in par-
titions of perceptual working memory. No limits have been set yet on the
capacities of EPIC’s stores for production rules and procedural control infor-
mation. Furthermore, EPIC has no limited supply of a general resource such
as activation capacity.

(5) The Role of Working Memory in Complex Cognitive Activities
EPIC’s working memory components play multiple supporting roles in task
performance. For processing of verbal information, contributions are made by
auditory working memory, vocal-motor working memory, and a procedural
control store. Similarly, visual working memory, ocular-motor working mem-
ory, and the procedural control store contribute to processing of visuospatial
information. Functional task analyses based on EPIC reveal that even the sim-
plest tasks require working memory and executive control to be performed
successfully.

(6) The Relationship of Working Memory to Long-Term Memory and
Knowledge
In EPIC, the partitions of working memory are structurally separate from
LTM, but complement and interact with it. The production-rule store in
EPIC's cognitive processor may be construed as a form of LTM for procedural
knowledge. Given our objectives to date, EPIC’s LTM for declarative knowl-
edge has not been applied extensively yet to model skilled task performance.
Nevertheless, it has the potential to represent and support the use of relevant
symbolic knowledge structures as need be.

(7) The Relationship of Working Memory to Attention and
Consciousness
In EPIC, “working memory” and “attention” refer to different theoretical
constructs. Through judicious executive control and orienting of physical
sensors, priority may be given to processing some external stimuli rather
than others (i.e., “attention to perception”). Also, priority may be given to
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Table 6.2, continued

producing some motor outputs rather than others (i.e., “attention to
action”). This control is achieved by manipulating items in working memory
(e.g., task goals) that determine which production rules are fired. The phe-
nomenological experience called “consciousness” ordinarily plays no role in
EPIC.

(8) The Biological Implementation of Working Memory
The theoretical assumptions embodied in EPIC are consistent with current
findings from neuroscience about working memory. For example, EPIC emu-
lates massively distributed parallelism of information processing and short-
term storage through modular interactive mechanisms, as found in the
human brain. Like those of the brain, EPIC’s perceptual and motor mecha-
nisms are treated as crucial subcomponents separate from and complemen-
tary to other cognitive mechanisms.

BASIC MECHANISMS AND REPRESENTATIONS IN WORKING MEMORY.
Working memory in EPIC is mediated by a variety of specific mechanisms.
The architecture’s perceptual and motor processors encode information and
put symbolic representations in modal working memory stores, such as audi-
tory and visual working memory. These representations are accessed, main-
tained, and used for task performance by the cognitive processor, which
applies sets of production rules to interact with the modal working memory
stores and perceptual-motor processors.  Applying its production rules, the
cognitive processor also maintains and uses symbolic representations in the

- control and tag stores of working memory for directing the flow of processing.

For example, many of these mechanisms and representations contribute
crucially to our EPIC model of performance in the serial memory span task.
Sets of production rules in the cognitive processor, together with the auditory
perceptual processor, auditory working memory, and vocal motor processor,
implement the model’s phonological loop. Coordinating item-chain con-
struction, rehearsal, and recall processes under the model also requires
manipulating items in the control and tag stores of the architecture’s produc-
tion-system working memory.

THE CONTROL AND REGULATION OF WORKING MEMORY. As the present
model further illustrates, EPIC has no separate general-purpose “central exec-
utive” (cf. Baddeley & Logie, Chapter 2, this volume). Instead, the cognitive
processor is programmed with specific sets of production rules to implement
executive control processes (¢.g., an overall task strategy) for performing par-
ticular tasks. These rules have the same format as other rules used in various
individual subtasks (e.g., covert rehearsal and overt recall). A principal func-
tion of the executive control processes in EPIC is to coordinate progress on
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various subtasks so that they get completed correctly and efficiently. This

involves managing the contents of EPIC’s working memory control and tag

stores with respect to task goals, step items, strategy items, status items, and

tags, which govern when subtask processes are executed and what perceptual-

motor resources are made available to them at each moment along the way.

THE UNITARY VERSUS NON-UNITARY NATURE OF WORKING MEMORY.
Despite a deceptive impression that Figure 6.1 might create initially, by now it
should be clear that working memory is not a single “construct,” “place,” or
“box” in EPIC. Rather, EPIC’s working memory has somewhat the same status
as does the “self” in Buddhism (Bukkyo Dendo Kyokai, 1985); under various
guises, it is at once both “everywhere” and “nowhere.” More precisely, we
conceive working memory to consist of multiple separable subcomponents.
Some of these subserve the temporary storage and on-line use of declarative
knowledge, such as perceptual (visual, auditory, tactile), motoric (ocular,
manual, vocal), and procedural control (task goal, strategy item, status item)
information. Other subcomponents subserve the application of procedural
(production rule) knowledge that implements executive and task processes.
Interactions amorig the various subcomponents of working memory occur
through the operations of EPIC’s cognitive processor.

The diverse and distributed multicomponent nature of working memory
in EPIC is illustrated by our present model of performance for the serial mem-
ory span task. This model uses the architecture’s auditory working memory,
control store, and tag store to maintain complementary types of declarative
knowledge during stimulus presentation, covert rehearsal, and overt recall.
Implementation of these processes through the model’s phonological loop
also requires the cognitive processor to interact with the vocal motor proces-
sor and auditory perceptual processor.

THE NATURE OF WORKING MEMORY LIMITATIONs. EPIC is predicated on a
philosophy of theory construction and performance modeling that aspires to
make plausible parsimonious assumptions. Limits on EPIC’s working memory
capacity therefore come mainly from two especially justifiable sources: finite
processing speed, and decay of symbolic representations in the modal (per-
ceptual) working memory stores. We have set no limits yet on the capacities

of EPIC’s stores for production rules and procedural control information.

Furthermore, EPIC has no limited supply of a general resource-like activation
capacity. In these respects, our theoretical framework differs significantly
from those of some other contributors to this volume (cf. Cowan, Chapter 3;
Engle et al., Chapter 4; Lovett et al., Chapter 5).

The parsimony and plausibility to which we aspire in EPIC are exemplified
by our present model for performance of the serial memory span task.
According to it, percent correct recall depends simply on the rates of item
decay in auditory working memory and on the rates at which chains of
stored items can be constructed, rehearsed, and recalled during each trial.
From prior research (e.g., Brown, 1958; J. Reitman, 1974; Sternberg et al.,

EPIC and Working Memory : 215

1978), we know that both of these basic limits probably exist. To the extent
that the former (decay) rates are high and the latter (processing) rates are low,
final recall will be poor. However, the rate of decay is not assumed to depend
on the numerosity of the items in auditory working memory, nor are the pro-
cessing rates — which stem from the cognitive processor's cycle time -
assumed to depend on the numerosity of the production rules being used for
task performance.

THE ROLE OF WORKING MEMORY IN COMPLEX COGNITIVE ACTIVITIES.
Given our ultimate research objectives, we have constructed EPIC to be espe-
cially suited for modeling complex cognitive activities associated with skilled
perceptual-motor performance in task situations such as aircraft-cockpit oper-
ation, air-traffic control, and speed-stressed human-computer interaction
(Kieras & Meyer, 1997; Meyer & Kieras, 1999). In EPIC, some working mem-
ory components (e.g., control store and tag store) contribute especially to the
executive control of task scheduling and to the allocation of perceptual-motor
resources among various subtasks, which play crucial roles during realistic
multiple-task performance. Complementing these contributions, other com-
ponents - including EPIC’s modal working memory stores - retain coded sen-
sory and motor information that is needed for ongoing interactions with the
physical environment.

Indeed, functional analyses based on EPIC reveal that to be performed suc-
cessfully, even the simplest tasks require working memory and executive con-
trol (Meyer & Kieras, 1997a, 1997b). As our present model of performance in
the serial memory span task illustrates, auditory working memory, vocal-
motor working memory, the control store, and the tag store are all essential
for processing elementary verbal information. Similarly, visual working mem-
ory, ocular-motor working memory, the control store, and the tag store are all
essential for processing elementary visuospatial information. Presumably
these mechanisms would be involved in more complex cognitive activities as
well and may help constitute future models that we formulate to characterize
realistic multiple-task performance.

THE RELATIONSHIP OF WORKING MEMORY TO LONG-TERM MEMORY AND
KNOWLEDGE. EPIC’s working memory is not simply an activated portion of
long-term memory (cf. Cowan, Chapter 3, Engle et al., Chapter 4, Lovett et
al., Chapter 5, this volume). Instead, various working memory partitions and
temporary stores in our architecture are structurally separate from long-term
memory. Nevertheless, their contents and those of long-term memory can
interact through operations mediated by the cognitive processor.

EPIC’s working memory provides a substrate for procedural skills to exploit
available declarative knowledge during on-line task performance. The produc-
tion-rule store in the cognitive processor may be construed as a form of long-
term memory for procedural knowledge. Given our prevailing objectives,
long-term memory for declarative knowledge has not been applied exten-
sively yet in our modeling endeavors. This is evident, for example, from the
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present EPIC model of performance in the serial memory span task, where the
organization and activation of declarative long-term memory play no explicit
role. However, declarative long-term mermory in EPIC has the potential to rep-
resent permanent symbolic knowledge structures and to support their use as
need be. We envision that learning and practice may influence working mem-
ory limitations and functions beneficially by enhancing both the efficiency of
procedural (production rule) knowledge and the efficacy of organized declara-
tive (propositional) knowledge (cf. Lovett et al., Chapter 5; Young & Lewis,
Chapter 7; Ericsson & Delaney, Chapter 8; Schneider, Chapter 10; O'Reilly et
al., Chapter 11, this volume).

THE RELATIONSHIP OF WORKING MEMORY TO ATTENTION AND CON-
sciousNEss. How working memory relates to attention and consciousness is
a complex and thorny issue with which cognitive psychologists have strug-

gled at least since the time of William James (1890). The resolution of this

issue hinges on the conceptual perspective that one has, and on the technical
definitions that one adopts.

In EPIC, “working memory” and “attention” refer to different theoretical
constructs. Through judicious executive control and orienting of physical
sensors, EPIC computational models give priority to processing some exter-
nal stimuli rather than others (i.e., “attention to perception”). Also, priority
is given to producing some motor outputs rather than others (i.e., “attention
to action”). This prioritization is achieved by manipulating items in the
working-memory control store (e.g., task goals) that determine which pro-
duction rules are fired. As a result, for example, eye movements to particu-
larly interesting or important visual stimuli may be executed, and
movements by one hand may be selected, prepared, and executed in prefer-
ence to movements by the other hand. The new items that these activities
cause to arrive in the modal working memory stores are the products of
attention, but they are not attention itself. Furthermore, in other respects,
working memory and covert attention are even more distinct under EPIC,
because for reasons of theoretical parsimony, we have not yet incorporated
covert attention shifting as part of the architecture’s perceptual processors
(cf. Schneider, Chapter 10, this volume). .

Consistent with the latter conservatism, the phenomenological experience
called “consciousness” ordinarily plays no role in EPIC. Unlike some daring
philosophers of mind (e.g., Chalmers, 1996), we refrain from speculating here
about how the architecture might yield this experience as an emergent prop-
erty. No claims are made for now about whether our EPIC computational
model of performance in the serial memory span task is conscious during the
execution of its procedures!

THE BIOLOGICAL IMPLEMENTATION OF WORKING MEMORY. Although
EPIC is an architecture for symbolic computational modeling of task perfor-
mance, its assumptions are nonetheless compatible with implementation at
biological and neural levels. This compatibility should not be surprising. As

EPIC and Working Memory 217

Newell (1990) argued forcefully, principled symbolic computational modeling
can be complementary - not antithetical - to biological and neural imple-
mentation. In fact, properties of human information processing at the neural
level impose fundamental constraints that prospective architectures and sym-
bolic computational models must take seriously and accommodate among
their basic assumptions. By doing so, they enhance their empirical credibility
and ultimate prospects for being implemented biologically. Conversely, bio-
logical and neural modeling may benefit from insights gained through sym-
bolic computational modeling about the inherent functional characteristics
of human information processing (e.g., see Schneider, Chapter 10, and
O'Reilly et al., Chapter 11, this volume).

Among EPIC’s assumptions that are relevant in these respects, we have
made several concerning the distributed, quasi-modularized, semiau-
tonomous, parallel nature of information processing. EPIC’s perceptual, cog-
nitive, and motor processors are assumed to operate simultaneously and
asynchronously, just as parallel distributed processing in the brain does. The
cyclicity of the cognitive processor’s operations likewise mimic some of the
brain’s neural rhythms (Kristofferson, 1967; Ray, 1990). Various working
memory stores in EPIC may have corresponding manifestations in the brain.
For example, it is possible that the control and tag stores of working memory
are implemented by anterior parts (frontal lobes) of the brain, whereas the
modal working memory stores for visual, auditory, and other sensory infor-
mation are implemented by posterior parts (e.g., temporal and parietal lobes).
Some other contributors to this volume hold similar views (e.g., Schneider,
Chapter 10; O'Reilly et al., Chapter 11).

These views are supported by recent evidence from brain-imaging experi-
ments conducted on participants during their performance of representative
working memory tasks (e.g., Awh et al., 1996; D’Esposito et al., 1995; Jonides
et al., 1993; Paulesu et al., 1993). This evidence reveals that during such per-
formance, multiple interconnected regions in the anterior and posterior parts
of the brain are active, forming an apparent network of modules that subserve
complementary functions, as we suggested above might be the case. The acti-
vation of these regions increases and decreases systematically, depending on
exactly which functions are engaged by the prevailing task(s). Perhaps by col-
lecting more such evidence in the context of new studies designed to test fur-
ther hypotheses based on EPIC and other alternative information-processing
architectures, progress can occur toward integrating theoretical frameworks
like ours with the biological and neural domains.

Theoretical Caveats

Of course, more questions remain to be answered beyond the preceding
designated eight. As presently formulated, our EPIC model does not directly
accommodate all of the prominent factor effects that have been found during
studies with the serial memory span task. For example, Brown and Hulme
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(1995) have shown that performance of this task depends systematically on
lexical and semantic properties of the items from which to-be-recalled
sequences are constructed. Related findings like this have been reported by
other investigators as well (e.g., Caplan, Rochon, & Waters, 1992; Gregg,
Freedman, & Smith, 1989; Naveh-Benjamin & Ayres, 1986). Because of con-
foundings between sequence articulation times and other factors (e.g., see
Wright, 1979), it is conceivable that our model can account for at least some
of these results without resort to additional mechanisms. Nevertheless, a full,
accurate account of them still may require augmenting the model with fur-
ther contributions from declarative long-term memory.

Dealing with other results, such as ones concerning the putative separabil-
ity of item and serial-order information (e.g., Estes, 1972; Healy, 1974; Shiffrin
& Cook, 1978), also may require modifications or elaborations in terms of
sophisticated guessing strategies and memory representations based on hier-
archical structures.? Which modifications and elaborations are most appropri-
ate presumably can be determined best through precise computational
modeling rather than just informal verbal theorizing. Computational model-
ing helps resolve theoretical controversies!

Directions for Future Research

Furthermore, our future research with EPIC will focus especially on the role
of working memory in realistic high-performance tasks. By doing so, we may
gain additional insights about how working memory really works during
“cognition in the wild.” Also, insights may be gained about how to facilitate
practical speed-stressed performance through new interface designs and mod-
ified task requirements.

For example, consider whether the usability of human-computer inter-
faces can be enhanced by augmenting them with capabilities for recognizing
and responding to an operator’s spoken commands. Concerning this issue,
many computer technologists have become convinced that such augmenta-
tions would provide fantastic enhancements. However, there is some trouble-
some evidence that operating an interface by spoken commands actually
interferes with the performance of verbally intensive tasks like text editing

-(Shneiderman, 1992). Such interference may occur too when task perfor-

mance requires perceiving and classifying speech or other sounds as well as
producing spoken commands. Could these disruptions stem from limitations

of a phonological-loop mechanism on which operators rely during

9 Because of the representation of serial order that our present model uses for items in audi-
tory working memory, losing an item of a sequence involves losing some information
about serial order. Clever guessing strategies could compensate for some of this loss. Also,
consistent with results of some investigators (e.g., Healy, 1974), separate representations of
item and order information are feasible in EPIC. However, for the sake of parsimony, we
have not implemented them yet.
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human-computer interaction? Perhaps we can answer this question more
definitively by constructing future models of human-computer interaction
that incorporate a phonological loop like the one in our present EPIC model
of performance for the serial memory span task. From this endeavor, it then
may be possible to predict more precisely when and how much particular
interfaces that entail speech I/O will help or hinder task performance.

As another important example, consider tasks that require high per-
formance in environments such as fighter aircraft cockpits, where overall
situation awareness is crucial (Graves, 1997). There situation awareness
presumably depends on working memory being filled with rich and ever-
changing details about the current state of the prevailing task environment.
Under these circumstances, if a fighter pilot loses situation awareness, the
consequences easily can be fatal. Such losses may stem from excessive mental
workload associated with the complex decisions, multiple-task coordination,
and human-computer interaction that cockpit operations require. Thus, it is
essential to understand how situation awareness can be fostered through
improved system designs.

Yet the available theory regarding this matter has been distressingly vague
(e.g., see O'Donnell & Eggemeier, 1986). We therefore hope that through
future EPIC modeling of the perceptual, cognitive, and motor requirements in
complicated cockpit operations, it will be possible to better characterize
important aspects of situation awareness and mental workload, which could
yield improved concepts and tools for designing cockpit systems. Of course, a
key part of our anticipated endeavors will be to clarify and computationally
represent the mechanisms of working memory in more detail.
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