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Modeling Visual Search of Displays of Many Objects: 
The Role of Differential Acuity and Fixation Memory
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Abstract

This paper describes a classic data set on visual search of 
100-object displays that differ in size, shape, and color and 
presents a cognitive architecture model  based on the active 
vision  concept that  accounts for the effects using differential 
visual acuity  and fixation  memory provided by a persistent 
visual store. The results provide an approximate upper bound 
on  the duration of fixation memory, and some approximate 
acuity functions for modeling visual search.
Keywords: visual  search;  cognitive modeling; eye 
movements.

Introduction
Many everyday and work activities involve visual search, 

the process of visually scanning or inspecting the 
environment to locate an object of interest that will then be 
the target of further activity. An especially tractable form of 
visual search takes place in many human-computer 
interaction tasks in which a particular icon coded by color, 
shape, and other attributes must be located on a screen and 
then clicked on using a mouse. Such visual search takes 
place in a visual environment that is much simpler than 
natural scenes, and so is a both a good theoretical and 
practical domain to model visual search processes: it 
combines relative simplicity of the visual characteristics of 
the searched-for objects with practical relevance: the task is 
a natural one in the sense that such activities are very 
common in current technology; an example is current radar 
displays in military applications, which can contain a large 
number of icons and other objects (cf. Kieras & Marshall, 
2006). Thus understanding in detail how visual search 
works in such domains can lead to better system designs. 

This paper presents a model for the results of a classic 
study on visual search of large and dense displays of 
multiple items that can be searched by multiple attributes. 
This paper follows Kieras (2009), who presented a model 
for the Peterson et al.  (2001) results demonstrating memory 
for fixations in a visual search task. In the Peterson et al. 
task, a single object, identified by shape, had to be located 
in field of a dozen objects which were very small and 
widely separated, meaning that each object had to be 
fixated before it could be identified.  This paper presents a 
model for a task at the other extremes: A large number of 
objects, differing in several attributes had to be searched, 
but they were large enough and closely spaced enough that 
the properties of several objects could be considered in a 
single fixation.  Memory for fixations still plays a role, but a 
critical role is also played by the differential availabilities 
of visual properties in extra-foveal vision, termed 
differential acuity in what follows.

Visual Search and Active Vision
In a laboratory visual search task, a display of objects is 

presented, and the participant must locate a particular 
object specified by perceptual properties and make a 
response based on whether such an object is present or 
exactly which properties it has (e.g. the specific shape). In 
most experiments, the display is static and contains some 
number of objects,  only one of which is the target that must 
be responded to; the others are distractors. The properties 
of the display or the displayed objects are manipulated,  and 
reaction time (RT) and/or eye movements are measured. 

The empirical literature on visual search was dominated 
for a long time by studies that measured only RT, and often 
for tachistoscopically presented displays that ruled out eye 
movements. But more recently the cost of eye movement 
data collection has decreased to the point that it has become 
much more common, and deservedly so. While any 
behavioral measurement only indirectly reflects the mental 
processes that produce it,  RT is clearly much less 
diagnostic of what goes on during visual search than eye 
movements. Furthermore, tasks in which the eye is free to 
move about a static display in a naturalistic manner, typical 
of eye movement studies of visual search, will be more 
representative of the normal operation of the visual system 
and the role of attention in visual activity. This point was 
argued eloquently by Findlay & Gilchrist (2003) in 
presenting an active vision framework for understanding 
visual activity; it is markedly different from traditional 
approaches to visual attention which have ignored both the 
role of eye movements and extra-foveal information.

In active vision, a key process is choosing the next object 
for inspection. A variety of studies (see Findlay & Gilchrist,
2003, for a review) have shown that this choice is not at all 
random; rather the color,  shape, size,  orientation, or other 
visual properties of objects influences which object is 
chosen for the next fixation; the phenomenon is called 
visual guidance. In the active vision framework, these 
properties are available in extra-foveal or peripheral vision 
to some extent, meaning that visual attention,  which in the 
context of normal visual activity is almost synonymous 
with where the eye is fixated, is a process of selecting for 
detailed examination one of a large number of objects 
currently perceived to be in the visual scene, and doing this 
selection on the basis of the visual properties available in 
extra-foveal vision.

The availability of a perceptual property in extra-foveal 
vision depends heavily on the eccentricity (the distance in 
degrees of visual angle from the center of gaze) of the 
object, normally referred to in degrees of visual angle, and 
on the size of the object (also measured in degrees of visual 
angle), and on the specific property involved. For example, 
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the color of an object of a given size in the periphery is 
usually more likely to be visible than its shape.

The EPIC Cognitive Architecture
The EPIC architecture for human cognition and 

performance directly supports an active vision approach to 
visual search and provides a general framework for 
simulating a human interacting with an environment to 
accomplish a task. Due to lack of space, the reader is 
referred to Kieras (2004), Kieras & Meyer (1997), Meyer & 
Kieras (1997) for a more complete description of EPIC. 

The EPIC architecture consists of software modules for 
the simulated task environment, or device, that interacts 
with a simulated human, which consists of perceptual and 
motor processor peripherals surrounding a cognitive 
processor. The device and all of the processors run in 
parallel with each other. To model human performance of a 
task,  the cognitive processor is programmed with 
production rules that implement a strategy for performing 
the task. When the simulation is run, the architecture 
generates the specific sequence of perceptual, cognitive, 
and motor events required to perform the task, within the 
constraints determined by the architecture components and 
the task environment. 

Figure 1 shows the visual system of EPIC. The eye 
processor explicitly represents differential retinal 
availability in terms of acuity functions that specify 
whether each visual property of each object is currently 
visible as a function of the size of the object and its 
eccentricity. The currently available visual properties for 
each object are represented in the sensory store; the 
perceptual processor then encodes the properties of each 
object, possibly in relation to other objects, and passes the 
encoded representation on to the perceptual store where 
they are available to the cognitive processor to match the 
conditions of production rules. The perceptual store thus 
contains the current representation of the visual world that 
cognition can reason and make decisions about, including 
decisions about where to move the eyes next by 
commanding the ocular motor processor.  The perceptual 
store retains the representations for all objects currently 

visible, with more information and detail about those that 
have been fixated.
Persistence of the visual perceptual store

When the eyes move away from an object, the properties 
of the object persist for a short time (e.g. 200 ms) in the 
sensory store, and when lost, the perceptual processor notes 
that the corresponding property in the perceptual store no 
longer has sensory support. After a relatively long time, the 
property will then be lost from the perceptual store. But if 
the object disappears completely, it and all of its properties 
will be removed from the perceptual store fairly quickly. 

The concept is that as the eyes move around the visual 
scene, a complete and continuous representation of the 
objects currently present in the visual situation will be built 
up and maintained in the perceptual store, allowing the 
cognitive processor to make decisions based on far more 
than the properties of the currently fixated object. The 
notion that this information persists for a considerable time 
as long as the scene is present is supported by studies 
summarized by Henderson & Castelhano (2005): a 
naturalistic visual scene is continuously present, but using a 
gaze-contingent forced-choice paradigm, subjects are tested 
for their memory of a previously fixated object; retention 
times at least several seconds long were observed. The 
model for the Peterson task (Kieras, 2009) provided a good 
fit to the repeat-fixation data with a retention time of at 
least 4 sec.

The Williams Study
A classic study using early eye-movement recording 

methodology was done by Williams (1966, 1967), who 
ventured into experimental territory commonly avoided 
even today. This study manipulated the size of the objects 
along with their color and shape, an unusual combination in 
the visual search literature,  and used a very large number of 
objects, which provides an upper bound on the difficulty of 
search tasks of this sort. 

The task required visual search of 100 objects varying in 
size,  color, and shape, each with a unique two-digit label. 
The 100 objects represented all combinations of 4 sizes, 5 
colors, and 5 shapes.  The search task was to locate the 
object with the matching label. Depending on the 
experimental condition,  additional attributes of the target 
object were cued; all combinations of size, color, and shape 
cues were tested in addition to the Number-only cue, which 
was only the object label. The hypothesis was that if a 
specification is an effective cue for visual guidance, more 
fixations should be on objects matching the cue than 
expected by chance. 

The entire display is 39° X 39° (all degrees are degrees 
of visual angle), and the search objects range from 0.8° to 
2.8° in size and distributed at random into the 13 X 13 grid 
of 3° X 3° cells. The cue specifications were shown in the 
center of the display. To convey an overall impression of 
the task, Figure 2 provides an example display produced by 
the model to be described later. Due to space restrictions 
this figure is too small for the details to be visible in  a 
paper printing, especially in monochrome, but the details 
can be seen easily by zooming in with the original pdf file. 
In this example,  the specified target is the medium-size 
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Figure 1. EPIC's visual system.
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yellow cross labeled 38, which is in the upper-left of the 
display. The concentric circles at center left show the 
current location of EPIC's eyes; the small inner circle has a 
1° diameter corresponding to the conventional fovea size; 
the outer circle is a calibration ring with 10° diameter. The 
display is shown to scale, except that to maintain legibility, 
the numeric labels are shown as magnified and left-justified 
in the object bounding boxes; in the actual stimuli and 
model representation, they are only 0.3° high, which would 
require foveation to recognize, and centered in the object.

The specification names for color and shape were the 
obvious names, but the four sizes were described as small, 
medium,  large, and very large. The specifications appeared 
first in the center of the display; when a button is pressed, 
the search objects were added to the display.  The 
participant pressed another button when he or she had 
located the specified object.

Eye movements were recorded with a corneal-reflection 
film camera system and scored by hand. The total number 
of fixations were counted, and classified by whether they 
fell on objects whose size, color, and shape matched the 
specifications. While 61% of the fixations were attributed 
to a specific object, 29% were deemed unclassifiable, a 
relatively large number by current methodological 
standards. 

Unlike modern practice, Williams obtained approximate 
reaction times (RT) indirectly by counting the number of 
fixations and dividing by 3.25, the observed average 
number of fixations per second. Because the observed 
number of fixations and the reported RTs are perfectly 
correlated, the RTs will only be mentioned occasionally. 

The Data
This being an early and basically descriptive study, 

Williams did not report confidence intervals or information 
sufficient for their calculation, and conventional statistical 
tests were not relevant.  However, the data set consisted of 
many thousands of fixations collected from 30 participants 
who performed 200 trials spread over 8 conditions. Based 
on the original reports, it appears that a typical sample size 
for the statistics for any one condition as reported below is 
in the neighborhood of about 1000. The proportions of 
fixations on objects of various types are the most important 
results; for an observed proportion of 0.5, the 95% binomial 
confidence interval for a sample size of 1000 is about 
0.47-0.53; this ±0.03 range can be used as an approximate 
confidence interval for this important subset of the data.

Figure 3 shows the observed proportion of fixations on 
objects that matched the cued properties (the predicted 
values will be discussed below). E.g., if the color was the 
only specified cue, about 60% of the fixations were on 
objects with the specified color. Figure 4 shows the number 
of fixations for each cue type. 
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Figure 3. Observed (solid bars) and predicted (shaded bars) 
proportion of fixations on objects that matched each cue type. The 
95% confidence intervals would be roughly ±0.03 for each 
observed proportion.
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Figure 2. An example of the physical display in a Williams (1966) 
task trial after several fixations as depicted in EPIC's 
automatically-generated display. Zoom in on this figure in the pdf 
file to see the detail.
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Visual guidance produced by color, size, and shape
It is clear from the results that color is the strongest cue 

for visual guidance,  resulting in the highest proportion of 
fixations on matching objects (0.61), the fewest fixations 
(25) and the fastest RTs (not shown, 7.6 s). Size comes 
next, and shape is a distant third.  There is a tendency for 
each cue to have little or no effect if a stronger cue is also 
present. If only the label is provided (the Number-only cue), 
the fixations on objects that match the target properties is at 
chance level, the number of fixations is large (74),  and the 
RT is quite long (23 s).

The importance of color in visual search is consistent 
with many results ranging from classic human factors 
studies (e.g. Sanders & McCormick, 1987) to recent HCI-
oriented studies (e.g. Fleetwood & Byrne, 2006). But in the 
active vision framework, color is not specially privileged in 
some way, but rather, various direct measurements show 
that the color of an object is visible over a wide range of 
eccentricity and object sizes (e.g. Gordon & Abramov,
1977), and so can often serve as an effective cue about 
where to look next. The relative ineffectiveness of shape is 
likewise not due to a fundamental problem with shape, but 
rather that in many cases, recognizing the shape requires 
resolving detailed features that can only be seen close to the 
fovea. As an extreme of shape recognition, recognizing the 
text label involves detecting small features, and so requires 
foveation unless the text is quite large (Anstis, 1974). 
Repeat fixations and memory failures

One overall feature of these results is that many more 
fixations are required than should be necessary if each 
object only received one fixation; for example,  it should 
require no more than 50 fixations on average in the 
Number-only condition to find the labeled object. Williams 
reports a small number (3%) of immediate repeat fixations, 
but does not report how many repeat fixations appeared 
over longer time periods.  Apparently objects are frequently 
looked at repeatedly; e.g. the 74 fixations in the Number-
only condition implies a repeat rate of about 33%! 

In contrast,  recent observation and modeling of repeat 
fixations (see Peterson et al.  2001,  Kieras & Marshall, 
2006, Kieras, 2009) suggests that repeat fixations are 
relatively rare, around 5%, implying a good memory for 
previous fixations, and almost all are performed 
immediately, being due to recognition (encoding) failures 
rather than failures of the memory for previous fixations. 
The 3% immediate repeat rate reported by Williams is 
consistent with this, but not the much higher overall repeat 
rate implied by the total number of fixations. 

However, the low-rate results were obtained in search 
tasks involving many fewer objects and that took much less 
time than Williams' task. Perhaps the much higher repeat 
rate in Williams' results is due to time decay of the fixation 
memory. In fact, in Peterson's task, repeat fixations at long 
lags become more frequent if the trial has gone on for an 
unusually long time (Peterson, personal communication). 
This issue will be important in modeling the Williams data. 

Model for the Williams Task
Constructing an EPIC model for the Williams task 

required a choice of (1) visual acuity parameters, (2) a 

parameter for the decay time of visual properties in the 
perceptual store that are no longer sensorily supported, and 
(3) a set of production rules that implemented the visual 
search strategy. Each of these will be described briefly.
Acuity functions

Despite the many decades of research on vision, the 
literature does not contain a comprehensive set of 
parametric data on acuity for different visual properties as a 
function of their eccentricity and size, especially for the 
properties and values typical of computer displays. Space 
limitations do not allow even a cursory review of the 
available data (but see Findlay & Gilchrist, 2003). To deal 
with this non-definitive picture, a simple family of acuity 
functions were proposed, and their parameters determined 
by a combination of general constraints set by the literature 
and iterative maximization of fit in the models. A separate 
function was specified for each property: encoded size 
(small, medium, etc.),  color, shape, and text label. The text 
acuity function was specified as text being available within 
1° of the current eye position, corresponding to the 
conventional definition of foveal vision and the small size 
of text used. A psychophysical acuity function was used for 
the other properties: For the property to be available, its 
size s must exceed a threshold which increases 
quadratically with eccentricity e and includes a Gaussian 
noise component X whose variability increases with the 
object size and coefficient of variation v:

threshold = ae2 + be + c
P(available) = P(s + X > threshold)
X ~ N(0, vs)

Such a function produces a wide area of highly probable 
availability, with a sharp tapering-off towards the periphery. 
The quadratic form was selected for simplicity: the 
parameters can be easily set to reflect a minimum size, 
general trend, and degree of curvilinearity, and were set to 
be consistent with models for other tasks not described 
here, and to have as much uniformity in the parameter 
values as possible. The function for color availability used 
in the model had parameter values of v=0.7, a=0.035, 
b=0.1, c=0.1. The acuity functions for encoded size and 
shape had the same values except for larger quadratic 
coefficients a of 0.2 and 0.3 respectively. Thus, consistent 
with the literature, the availability of the size and shape 
properties drops off with eccentricity much more rapidly 
than for color.

The availability for each property at the retinal and 
sensory store level is independently resampled for all 
objects whenever the eye is moved. Figure 5 shows an 
example of EPIC's visual sensory store after several 
fixations, corresponding to Figure 2, showing what is 
currently available around the fixation point. In EPIC's 
display, objects whose location, but no other properties, are 
known are represented as light gray open circles. Objects 
which are close enough to the current fixation point to have 
their color available, but not their shape, are represented as 
colored open circles. In Figure 5, the shape, color, encoded 
size,  and label are available for the currently fixated object. 
The colors of several extrafoveal objects are also available, 
and even the shape for a nearby large object. As the eye 
moves around, the available properties of the same object 
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can fluctuate, and will not be reliably available from one 
fixation to the next.
Perceptual store persistence time

Once a property of an object is visible, that property is 
attached to the object representation in the visual perceptual 
store where it can serve to match conditions of production 
rules. The visual perceptual store is persistent,  in that as 
long as an object is within the visual field, its properties, 
once acquired, will persist for a long time and thus can 
serve as a memory for previous fixations, as described in 
Kieras (2009). Figure 6 shows a sample of EPIC's visual 
perceptual store, corresponding to Figures 2 and 5, several 
seconds into the visual search, showing the information 
persisting from previous fixations.  Previously fixated 
objects have all properties including the label, but will 
eventually lose this information until fixated again. But in 
the meantime, their color,  size, or shape can be used to 
guide the choice of which object to fixate next. 

The duration parameter was estimated iteratively by 
fitting the model, starting with the 4 sec lower bound 
determined in Kieras (2009); a good fit was found with a 
duration of 9 seconds.
Task strategy

The visual search strategy in the model is an application 
of a basic strategy, shown in Figure 8, that has been used in 
several EPIC visual search models. There are two threads 
of execution. Nomination rules in the first thread propose 
objects to fixate based on available visual properties, and 
also nominate a random choice. Choice rules then pick a 
single candidate from the nominated objects according to a 
priority scheme, and launch an eye movement to the chosen 
candidate. The rules in the second thread wait for all 
relevant properties of the fixated candidate to be fully 
visible and either respond if it is a target, or discard the 
candidate if not. Given the typical 100 ms transduction and 
encoding times for visual properties and the 50 ms 
production rule cycle time, the overlapped processing 
provided by the two threads enables the time between 
successive eye movement initiations to be short, in the 
range of 250 to 300 ms, which is commonly observed in 
high-speed visual search tasks.

For the Williams model, the strategy nominates candidate 
objects that have the cued properties, such as the cued color 
or cued shape. The fixation memory effect is implemented 
by only nominating objects whose text label property is 
currently unknown; either because the object was never 
fixated, or it was fixated a long time ago and has been lost 
from the perceptual store. The priority scheme for choosing 
a fixation target favors the more available information, and 
so chooses an object with a matching color over one with a 
matching size over one with a matching shape. For 
simplicity, given the apparent very high repeat fixation 
rates in the data, the mechanism for the relatively rare 

Figure 6. An example of the contents of the perceptual store after 
several fixations, showing the accumulated object information. 
Zoom in on this figure in the pdf file to see the detail.
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Figure 8. Flowchart for the search task strategy. 

Figure 5. An example of the contents of the sensory store 
corresponding to the lower left corner of Figure 2, showing 
available properties of objects near the current fixation point.
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encoding failures used in previous models (e.g. Kieras, 
2009; Kieras & Marshall, 2006) to trigger repeat fixations 
was not implemented in this model, corresponding to an 
assumption that most of the revisits are due to memory 
failure in this task. 

Model Results
The model was run for 500 trials in each experimental 

condition, and the simulated eye movements and response 
time data were collected and tabulated analogously to the 
original experiment. Figure 3 above shows the observed 
and predicted proportion of fixations of each type. Clearly 
the fit is very good using the acuity function and perceptual 
store persistence parameters listed above (R2 = .99; average 
absolute error (AAE) = 3%). 

The observed and predicted number of fixations is shown 
in Figure 4 above. Again there is a very good fit (R2 = 0.98, 
AAE = 12%). The observed and predicted RTs (not shown) 
also fit well (R2 = 0.98 and AAE = 9%), although there is a 
general tendency for the model RTs to run longer than 
William's results. Given the unusual methodology used to 
determine the RTs, it is not clear that attempting to improve 
the fit to the absolute value would be worthwhile.

In an analysis of the model output, the proportion of 
repeat fixations was found to increase substantially as the 
perceptual store duration was decreased, and the number of 
fixations (or RT) increased.  The persistence parameter was 
adjusted to produce the overall good fit on the number of 
fixations shown in Figure 4, and the proportion of repeat 
fixations on search objects was then determined with the 
final parameter value. The range was 11% repeats in the 
best condition to 33% in the Number-only condition.  This 
proportion was highly linear with the predicted number of 
fixations (R2 = 0.95). This suggests that the loss of fixation 
memory over time is a good account for the excess number 
of fixations in the data.

Conclusion
This model, along with the one in Kieras (2009), 

represents a realization of the active vision concept in terms 
of a computational cognitive architecture that incorporates 
differential acuity and a persistent visual store that 
represents the current visual situation and provides a 
memory of previous fixations. Two more specific points 
emerge: (1) Simplistic statements about which properties 
can guide visual search must be replaced by statements 
about which properties are available in a specific visual 
situation. For example, color should not be very effective if 
the objects were very small, and shape should be more 
effective if the objects were larger. (2) Repeat fixations 
have two causes: the persistent visual store is capacious and 
reliable at short durations, meaning that repeat fixations are 
due just to encoding errors, but if the search takes a very 
long time, information from previous fixations is lost, and 
more repeat fixations are the result. 

This general model appears to be ready for practical 
application in situations where the to-be-searched display 
contains uniform-color objects with simple geometric 
shapes and very small distinguishing features such as text 

labels. The specific acuity functions determined here 
should be useful approximations in modeling such displays. 

At the theoretical level, this type of model appears to be a 
simple and sound approach to representing visual activity, 
and is ready to use either as a component in models of more 
complex tasks that involve visual search as a subtask, or as 
a basis for models of more advanced visual processing.
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