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30 Modern Computational Perspectives on
Executive Mental Processes and Cognitive
Control: Where to from Here?

David E. Kieras, David E. Meyer, James A. Ballas,
and Erick J. Lauber

ABSTRACT Formal concepts and algorithms from contemporary computer operating sys-
tems can facilitate efforts to precisely characterize the supervisory functions of executive
mental processes. In particular, by helping to advance work with the “executive-process
interactive control” (EPIC) architecture, a theoretical framework for computational model-
ing of human multitask performance, operating system fundamentals provide insights
about how people schedule tasks, allocate perceptual-motor resources, and coordinate task
processes under both laboratory and real-world conditions. Such insights may lead to dis-

coveries about the acquisition of procedural task knowledge and efficient multitasking
skills.

Following the cognitive revolution in scientific psychology (circa 1950),
many experimental psychologists and cognitive scientists have assumed
that human cognition shares fundamental similarities with symbolic
information processing by electronic digital computers (Lachman,
Lachman, and Butterfield 1979; Newell 1990). Although the operations of
such computers are serial in some respects, they can emulate parallel pro-
cessing of multiple information streams and implement algorithms for
modeling the performance of perceptual-motor and cognitive tasks. As a
result, the computer metaphor has inspired significant discoveries about
perception, attention, learning, memory, language, and problem solv-
ing. Furthermore, as computational hardware and software continue to
evolve, the computer metaphor may become increasingly apt.

Encouraged by this prospect, our work has focused on characterizing
executive mental processes with a particular theoretical framework, the
“executive-process interactive control” (EPIC) architecture. Using EPIC,
we have formulated precise computational models of human multitask
performance under both laboratory and real-world conditions (e.g.,
Kieras and Meyer 1997, forthcoming; Meyer and Kieras 1997a,b, 1999).
EPIC models account well for quantitative data, predict new phenomena,
and point toward promising directions for future research on cognitive
control.

The functions of executive processes in EPIC correspond closely to
ones provided by a computer operating system (OS) that supports paral-
lel information processing for concurrent execution of multiple task pro-
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grams (Stallings 1998). This correspondence suggests that studying the
fundamentals of contemporary OSs may facilitate the development of
EPIC. Such study may also advance the conceptualization of executive
mental processes in other theoretical frameworks (e.g., Baddeley 1986;
Braver and Cohen, chap. 31, this volume; Kimberg and Farah, chap. 32,
this volume; Norman and Shallice 1986), thereby helping to banish the
“homunculus” of cognitive control about which previous pundits have
complained vociferously (e.g., Newell 1980; Neisser 1967).

In our opinion, the modern computer metaphor is relevant to answer-
ing several related questions: Do people have general executive pro-
cesses that are used across many contexts? Exactly what functions do
these processes serve? How might they influence the representation and
acquisition of procedural task knowledge? Are there task-specific aspects
of cognitive control for which general executive processes must be sup-
plemented through special training? Which experimental procedures are
especially suited for eliciting and analyzing particular control opera-
tions? Does the human brain really implement the types of function that
an OS provides?

Toward answering these questions, section 30.1 introduces EPIC;
section 30.2 describes results from applications of EPIC to modeling
multitask performance and characterizing particular executive mental
processes; section 30.3 presents additional relevant concepts from con-
temporary computer technology and OSs; section 30.4 discusses how
these concepts may promote research with EPIC and guide theorizing
about cognitive control; and section 30.5, in summarizing our conclu-
sions, offers final thoughts on the directions of future research.

30.1 THE EXECUTIVE-PROCESS INTERACTIVE CONTROL
ARCHITECTURE

Extending proposals by previous theorists (e.g., Anderson 1983; Card,
Moran, and Newell 1983; Newell 1990), we have designed EPIC to inte-
grate cognitive and perceptual-motor operations with procedural task
analyses of skilled performance.

Components

EPIC has a central cognitive processor with a production-rule interpreter
and a multipartition working memory (WM) surrounded by peripheral
sensors, perceptual processors, motor processors, and effectors that all
operate in parallel. These permanent interconnected components consti-
tute EPIC’s “hardware.” Each perceptual and motor processor functions
as a distinct limited-capacity channel of input or output. Task perfor-
mance is modeled by programming the cognitive processor with pro-
duction rules that make decisions and generate responses based on the
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contents of WM. The production rules, stimulus codes, and response
codes may vary depending on specific task requirements.

Consistent with basic periodicities of human information processing
(Kristofferson 1967), EPIC’s cognitive processor operates in cycles that
have stochastic durations whose mean is 50 msec. While doing so, the
cognitive processor enables a high degree of parallelism in multitask per-
formance. On each cycle, its production-rule interpreter tests the condi-
tions of all rules in procedural memory, and executes the actions of all
rules whose conditions match the current contents of WM. There is no set
limit on how many rules can be applied simultaneously. Thus cognitive
processes involving distinct sequences of rules may progress simultane-
ously, sharing system resources as time passes.

Basics of Control

The flow of information processing in EPIC is controlled with production
rules like the following one, which selects and initiates a manual “poke”
response to a red target stimulus during a tactical decision task (Kieras
and Meyer 1997, forthcoming; Meyer and Kieras 1999):

IF
( (GOAL DESIGNATE-TARGET-FOR-TACTICAL-TASK)
(STRATEGY MAKE-POKE-RESPONSE-IMMEDIATELY)
(STEP MAKE-POKE-RESPONSE)
(TAG ?0BJECT IS STIMULUS)
(VISUAL ?0BJECT COLOR RED)
(NOT (VISUAL ??? SIZE LARGE))
(STATUS TACTICAL-TASK-PROCESS-HAS-EYE)
(MOTOR MANUAL PROCESSOR FREE))
THEN
( (SEND-TO-MOTOR-MANUAL-PROCESSOR PERFORM-POKE~(LEFT INDEX)
?0BJECT)
(ADDWM (GOAL WATCH-FOR-DESIGNATION-EFFECT))
(DELWM (STEP MAKE-POKE-RESPONSE))
(ADDWM (STEP WAIT-FOR-WATCHING-DONE)))

Sequential Rule Execution As illustrated here, EPIC production rules
have conditions and actions that contain goal and step items. Adding and
deleting step items in working memory enables the rules to be executed
in particular sequences. For example, the preceding rule would be
enabled by putting “STEP MAKE-POKE-RESPONSE” in WM with an
add-to-WM (ADDWM) action. Taking this item out of WM with a delete-
from-WM (DELWM) action would disable the rule, and then putting
“STEP WAIT-FOR-WATCHING-DONE” in WM would enable another
subsequent rule. Because information in WM is subject to loss or corrup-
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tion, errors of sequencing may occur under EPIC, as they do under real-
world circumstances.

Subroutine Calls Using the same goal item in a set of EPIC production
rules lets them function like a computer program subroutine. The sub-
routine would be “called” by adding its shared goal item to working
memory. After the call, a start-up rule in the subroutine would “fire” and
add its first step item to WM. When the subroutine finishes, its termina-
tion rule would delete the routine’s goal and last step items from WM,
and signal that the subroutine has finished. For example, the preceding
rule calls a subroutine for watching the visual effects of the manual poke
response. This entails adding two items to WM: “GOAL WATCH-FOR-
DESIGNATION-EFFECT,” which is the goal item for the subroutine; and
“STEP WAIT-FOR-WATCHING-DONE,” which is used by another rule
that waits for the subroutine to be completed.

Interrupts Thus EPIC implements capabilities analogous to computer
interrupts. A production rule can have conditions such that it waits for a
certain future event to occur regardless of other intervening activities.
When these conditions are satisfied, the rule may start the execution of
other rule sequences to deal with the interrupting event.

Task Processes

Procedural knowledge for performing tasks is represented by EPIC pro-
duction rules that fire in particular sequences. Our models embody
programming-style principles like those applied in computer software
design. Each task and subtask has a set of rules with standard formatting
of control items and input/output (I/0) information. Standard protocols
are used for task start-up, completion, error detection, abort, and restart
procedures.

Executive Processes

In modeling multitask performance, we formulate distinct sets of super-
visory production rules that implement supraordinate executive pro-
cesses, whose function is to add and delete working-memory items for
controlling the execution of various task and subtask procedures. Under
EPIC, an executive process may suspend a task process by deleting its
goal item from working memory, and then resume the task process by
adding its goal item to WM again. Similarly, an executive process may
use strategy items to instruct a task process about which of several alter-
native paths to take. These control operations can be accomplished
through rules whose conditions match status items that the task process
adds to WM along the way.
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30.2 APPLICATIONS OF EXECUTIVE-PROCESS INTERACTIVE
CONTROL TO MULTITASK PERFORMANCE

To illustrate more fully how we characterize executive mental processes,
this section describes four cases of several for which EPIC models of
multitask performance have been developed: (1) discrete successive
tasks; (2) discrete concurrent tasks; (3) elementary continuous tasks; and
(4) compound continuous tasks. From them, it will become clearer how
EPIC enables task coordination and scheduling to be described under a
variety of conditions. Also, the stage will be set for examining cognitive
control from the perspective of computer operating systems.

Discrete Successive Tasks

In the discrete successive-tasks procedure, also known as “task switch-
ing,” participants either alternate between two different choice-reaction
tasks or perform one task repeatedly during a series of discrete trials,
with a response-stimulus interval (RSI) separating each response from onset
of the next stimulus. Reaction time (RT) and accuracy are measured as a
function of trial type, RSI, and other factors. Switching time costs (STCs)
are calculated from differences between mean RTs on alterna ting-task and
repeating-task trials (for a review, see Pashler, chap. 12, this volume).

According to some theorists, executive mental processes contribute
substantially to STCs (e.g., Meiran 1996; Rogers and Monsell 1995;
Rubinstein, Meyer, and Evans forthcoming; see also Goschke, chap. 14,
De Jong, chap. 15, Meiran, chap. 16, and Keele and Rafal, chap. 28, this
volume). Following their lead, we have formulated an EPIC model to
account for some results from the successive-tasks procedure. The details
of this formulation concern both the representation of procedural task
knowledge and the cognitive control of task switching.

Lauber 1995 For now, our model deals with data from Lauber 1995
(exps. 4 and 5), which varied response-stimulus intervals, stimulus-
response compatibility, and practice orthogonally. Additive and interac-
tive effects of these factors strongly constrain the type of model that may
account for them.

Twenty undergraduate students participated in Lauber’s study. They
were divided into two groups that performed basic choice-reaction tasks
with different S-R mappings. Members of each group were tested indi-
vidually during three 1-hour sessions. The stimuli for each task were
printed digits. The responses were keypresses made with fingers of the
right hand. Stimuli and responses were paired to form four alternative S-
R mappings, each of which was used in one of four different tasks: com-
patible task A, compatible task B, incompatible task C, and incompatible
task D. For task A, the digits 1, 2, 3, and 4 were mapped respectively to
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Figure 30.1 Second-task reaction times from the first session in Lauber 1995. The dark
points connected by solid lines represent observed mean reaction times as a function of
response-stimulus interval, task difficulty (compatible versus incompatible 5-R map-
pings), and trial type (alternating-task versus repeating-task trials). The light points con-
nected by dashed lines represent simulated mean RTs produced by the EPIC model in
figure 30.2.

the index, middle, ring, and little fingers; for task B, this mapping was
reversed. For task C, the digits 1, 2, 3, and 4 were mapped respectively to
the middle, little, index, and ring fingers; for task D, this mapping was
reversed.

During each test session, there were two types of trial block. One type
contained a series of alternating-task trials, and the other contained a
series of repeating-task trials. On each alternating-task trial, participants
in group 1 performed task A followed by task B, or vice versa; on each
repeating-task trial, they performed one of these tasks twice. A similar

arrangement of tasks C and D was used for group 2. Before each trial

block, subjects were told what their tasks would be. Each block included
two RSIs, 50 and 750 msec, which varied randomly across trials. The
intertrial intervals equaled 1 sec.

Empirical Results Figure 30.1 shows some results from the first session.
Mean RTs of second-task (post-RSI) responses were reliably longer for
alternating-task trials, incompatible S-R mappings, and short RSIs.
Although some reliable two-way interactions occurred between these fac-
tor cffects, S-R compatibility and RSI affected mean switching time costs
almost additively. Furthermore, despite these effects, large switching time
costs persisted after the longer RSI, as other investigators have found
(e.g., Allport and Wylie, chap. 2, this volume; Allport, Styles, and Hsieh
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1994; De Jong, chap. 15, this volume; Rogers and Monsell 1995).1 1t is this
overall pattern for which EPIC accounts.

EPIC Models Of course, there are various ways that we could model
task switching with EPIC. For example, one conceivable model would
have two sets of task-specific, goal-sensitive production rules available
simultaneously in procedural memory. In this case, the rules used to
select responses for Lauber’s incompatible tasks C and D might have the
following forms:

IF
((GOAL PERFORM TASK C)
(STEP MAKE PRESS-RESPONSE TO DIGIT 1)
(VISUAL ?0BJECT DIGIT 1))

THEN

( (SEND-TO-MOTOR MANUAL PERFORM PRESS (RIGHT MIDDLE))
(DELWM (STEP MAKE PRESS-RESPONSE TO DIGIT 1))
(ADDWM (STEP WAIT-FOR PRESS-DONE)))

IF

( (GOAL PERFORM TASK D)
(STEP MAKE PRESS-RESPONSE TO DIGIT 1)
(VISUAL ?0BJECT DIGIT 1))

THEN

( (SEND-TO-MOTOR MANUAL PERFORM PRESS (RIGHT RING))
(DELWM (STEP MAKE PRESS-RESPONSE TO DIGIT 1))
(ADDWM (STEP WAIT-FOR PRESS-DONE)))

Given the simultaneous availability of such rules, an executive process
could switch tasks simply by changing the task goal items in working
memory, disabling one task’s rules and enabling the other’s.

Yet this type of model would fail to account for persistent large switch-
ing time costs such as Lauber observed. Under EPIC, changing goal items
takes only one cognitive-processor cycle, which should be completed
within about 50 msec regardless of other prevailing factors. However,
Lauber’s STCs ranged from 200 to 300 msec, they endured after a rela-
tively long (750 msec) RSI, and S-R incompatibility affected them reliably.
Thus additional delays associated with other control operations besides
changing goal items presumably contributed to task switching here.
Perhaps these contributions occurred because the tasks had different S-R
mappings but involved the same stimuli and responses. Such mapping
conflicts might substantially increase the amount of practice needed to
learn adequate task-specific, goal-sensitive production rules (Anderson
1983), requiring participants to rely initially on other types of procedural
and declarative knowledge instead.

Thus our modeling of Lauber’s results has taken an alternative direc-
tion. Consistent with some other theorists (e.g., Rubinstein, Meyer, and
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Evans forthcoming), we assume that to reduce conflicts in switching
between similar tasks, five constraints are imposed: (1) at each moment,
symbolic S-R mapping information for performing just one task is kept in
WM; (2) switching tasks involves removing currently irrelevant informa-
tion from WM; (3) the irrelevant information is replaced with relevant
information for the next task; (4) these “cleanup” and “setup” operations
entail relatively slow interactions with long-term memory; and (5) setting
up for the next task is triggered by its stimulus onset.

On the basis of these assumptions, we have formulated a model with a
single set of generic production rules that perform both of Lauber’s
incompatible tasks. For each incompatible task, these rules select re-
sponses by using a particular list of S-R pairs in WM. This involves
checking the stored S-R pairs serially to find one whose stimulus term
matches the presented stimulus (cf. Theios 1973). When the match is
found, its associated response term is sent to the manual motor pro-
cessor. Given this protocol, task switching requires not only changing
task goal items but also retrieving the next relevant S-R pairs from long-
term memory.

For performing both of Lauber’s compatible tasks, our model has
another set of generic production rules. They assume that EPIC’s visual
perceptual processor directly recodes each presented stimulus into two
response symbols appropriate for the alternative compatible S-R map-
pings (e.g., “1” — “index finger” and “1” — “little finger”). A task rule
then chooses and sends one or the other of these response symbols to the
manual motor processor. This choice is made by referring to a WM strat-
egy item that indicates which 5-R mapping is currently relevant. Given
this protocol, task switching requires not only changing task goal items
but also retrieving the relevant strategy item from long-term memory.

These operations are controlled by an executive process that takes dif- -

ferent paths for alternating-task and repeating-task trials (figure 30.2). At
the start of repeating-task trial blocks, the executive process calls a sub-
routine that sets up WM to perform a particular task, and then lets this
task be performed twice during each trial. In contrast, at the start of each
alternating-task trial, the executive process waits until the first-task stim-
ulus has been recognized, next calls the subroutine that sets up WM for
the first task, and then lets the first task be performed. After the first-task
response has been made, the executive process calls another subroutine
that cleans up WM, waits until the second-task stimulus has been recog-

nized, calls the setup subroutine for the second task, lets the second task -

be performed, and finally cleans up WM again. Fitting our model to
Lauber’s data required adjusting the times taken by the WM setup and
cleanup subroutines.

Simulated Results Figure 30.1 shows the mean second-task RTs pro-
duced by our model, which accounts well for the main effects of trial
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Figure 30.2 Flowchart of executive processes on repeating-task trials (left) and alternating-
task trials (right) in the EPIC model for Lauber 1995. Mean reaction times produced by this
model appear in figure 30.1.

type, RSI, and 5-R mapping, as well as their additivities and interactions.2
Our model succeeds much better than one that switches tasks simply by
changing goal items in working memory.

Theoretical Implications The working-memory setup and cleanup
operations that we needed to fit Lauber’s data each took about 150 msec.
Why so long? One possible answer is that in reality, these operations
entail gradually activating relevant and inhibiting irrelevant symbolic
long-term memory representations (cf. Allport, Styles, and Hsieh 1994;
Anderson 1983; Goschke, chap. 14, this volume). This would explain why
STCs persist at long RSIs and why WM setup is not started until the next
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task’s stimulus has been recognized. Perhaps the executive process waits
to start setting up WM because stimulus recognition helps amplify req-
uisite memory activation. At present, EPIC does not implement such acti-
vation explicitly. Thus supplementing EPIC with appropriate activation
mechanisms could prove worthwhile.

From our present perspective (figure 30.2), however, the executive
processes for task switching seem relatively simple. Other than calling
WM setup and cleanup subroutines, they contribute very little to STCs.
This is consistent with claims of Allport, Styles, and Hsieh (1994), who
questioned whether task-switching studies reveal much about executive
mental processes per se. Nevertheless, such studies could have further
benefits in other respects. For example, they may yield new insights
about the representation of procedural task knowledge, extending what
we have discovered already through EPIC modeling.

Discrete Concurrent Tasks

A second context in which EPIC has enabled us to learn more about exec-
utive mental processes is the “psychological refractory period” (PRP)
procedure (Pashler 1994, chap. 12, this volume). In this procedure, sub-
jects perform two concurrent choice-reaction tasks during series of dis-
crete trials. Typically the tasks involve different stimuli and responses. On
each trial, a first-task stimulus is followed by a second-task stimulus.
Because the stimulus onset asynchrony (SOA) is relatively short, the
second-task stimulus may precede the first-task response. However,
subjects are instructed to give task 1 higher priority, and they may be
encouraged to make the first-task response before the second-task
response. RTs and response accuracy are measured as a function of the
SOA and other task factors. The PRP procedure interests us because,
despite its task prioritizing and stimulus sequencing, there is potentially
ample opportunity for tasks 1 and 2 to be performed at least somewhat
in parallel. By formulating EPIC models under these conditions, we can
better understand how such cognitive control is achieved.

EPIC Model For example, figure 30.3 outlines the executive process of
a model that has been tested extensively in our research concerning the
PRP procedure (Meyer and Kieras 1997a,b). Here the executive process
puts tasks 1 and 2 respectively in “immediate” and “deferred” modes at
the start of each trial. This is done by adding strategy items (e.g., “STRAT-
EGY TASK 11S IMMEDIATE”) to WM. Putting task 1 in immediate mode
lets its responses be selected and sent to their motor processor as quickly
as possible for movement production. While task 2 is in deferred mode,
its production rules can select symbolic identities of second-task re-
sponses and store them in working memory, but the selected second-
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Figure 30.3 Flowchart of executive and secondary-task processes in the EPIC strategic
response-deferment model for the psychological refractory period (PRP) procedure.

task response identities are not sent to a motor processor, and they are not
produced as overt movements. When, however, a prespecified *
locking event” occurs subsequently (e.g., the overt first-task response is
initiated), the executive process shifts task 2 to immediate mode.
Following this shift, previously selected second-task responses may be
sent from WM to their motor processor for movement production. If
response selection has not yet finished for task 2 before it is shifted to
immediate mode, then subsequently the second-task production rules
will both select and send the second-task responses directly to their
motor processor.

Simulated versus Empirical Results Comparisons between simulated
and empirical results from various studies with the PRP procedure have
been encouraging. Our EPIC strategic response deferment model
accounts accurately for differences between observed mean first- and
second-task RTs as well as additive and interactive factor effects on them.
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The model’s goodness of fit is typically high (R2>0.95) and involves only
modest numbers of “free” parameters.

Theoretical Implications Our research has revealed that people sched-
ule the tasks of the PRP procedure through a combination of various
mechanisms. Symbolic response codes for tasks 1 and 2 may be selected
concurrently under flexible strategic control, whereby physical move-
ments are produced in proper serial order. Contrary to traditional
response-selection bottleneck hypotheses (cf. Pashler, chap. 12, Jolicoeur,
Dell’Acqua, and Crebolder, chap. 13, and Ivry and Hazeltine, chap. 17,
this volume), we have found no evidence that skilled dual-task perfor-
mance is constrained by immutable “hardware” decision or response-
selection bottlenecks.

Elementary Continuous Tasks

The preceding conclusions based on the EPIC architecture have been
strengthened by formulating computational models of executive mental
processes for elementary continuous tasks (Kieras and Meyer 1997). Here
the focus is on visuomanual tracking and choice-reaction tasks that must
be performed without predictable pauses along the way. By fitting quan-
titative results obtained under such conditions, we further demonstrate
the existence and generality of strategic cognitive control that judiciously
overlaps stages of processing in human multitask performance.

Martin-Emerson and Wickens 1992 For this demonstration, our
research has dealt especially with Martin-Emerson and Wickens 1992, in
which subjects viewed upper and lower windows on a display screen. In
the upper window were a circular target and crosshairs cursor. During 1-
minute test intervals, the cursor’s location was perturbed haphazardly by
an accelerative forcing function. The subjects performed a compensatory
tracking task, moving a right-hand joystick to keep the cursor on target.
The tracking task was either hard or easy, requiring more or less frequent
joystick movements. Meanwhile, in the lower window, horizontal arrows
appeared intermittently. Depending on whether an arrow pointed right
or left, subjects pressed a left-hand index or middle finger key. The cen-
ters of the task windows were separated by a visual angle that varied sys-
tematically across test intervals. As this angle increased, eye movements
that traveled greater distances were required for the stimuli to be iden-
tified correctly. Both the tracking and arrow-discrimination tasks were
supposed to receive high priority.

Empirical Results As shown in figure 30.4, mean RTs for the arrow dis-

criminations increased reliably with the visual angle between display
windows but were relatively unaffected by tracking difficulty. In contrast,
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Figure 30.4 Results from Martin-Emerson and Wickens (1992). Top. Observed mean reac-
tion times (dark points on solid lines) and simulated mean reaction times (light points on
dashed lines) produced by the EPIC model in figure 30.5 for the arrow-discrimination task
when it was performed concurrently with either an easy or hard visuomanual tracking task.
Bottom. Observed and simulated root mean square (RMS) errors for the visuomanual track-
ing task when it was easy or hard. '

root mean square (RMS) tracking errors were reliably greater for hard
tracking, but the visual angle affected them relatively little. This occurred
even though the tracking errors were measured during 2 sec intervals
that started at the onsets of the stimuli for the arrow-discrimination task.

EPIC Models To account for these results, we first formulated an EPIC
model that uses inefficient “lockout” scheduling, which let us test pre-
dictions based on the traditional response-selection bottleneck hypothe-
sis (cf. Pashler, chap. 12, this volume). According to this model, whenever
an arrow occurs, tracking is suspended as soon as possible, performance
of the arrow-discrimination task proceeds until completion, and then
tracking is resumed. Given realistic delays in EPIC’s motor processors,
such lockout scheduling yielded excessively large RMS tracking errors.
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processes represent context-dependent supervisory control imposed under these condi-

tions. Mean reaction times and root mean square (RMS) tracking errors produced by this
model appear in figure 30.4.

These discrepancies led us to reject this first model and to formulate a
second model, with more efficient overlapped task scheduling,

Figure 30.5 shows the task and executive processes of our second
model. Here the executive process initially starts the tracking task and
enables decisions about joystick movements to be made on the basis of
perceived cursor movements. N ext, the executive process enters an itera-
tive loop in which it sends commands to the ocular motor processor for
keeping the eyes on the tracking task cursor while waiting for an arrow
to occur. During this wait, cursor movements may trigger the production
rules of the tracking task, which send commands to the manual motor
processor for producing joystick movements that keep the cursor on tar-
get. When the onset of an arrow is detected, the executive process starts
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the arrow-discrimination task and enables its production rules to select a
keypress response in deferred mode. For an arrow in foveal or parafoveal
vision, perceptual identification proceeds without further ado, and a key-
press response is selected while tracking continues until the response’s
identity becomes available in working memory. Otherwise, for an arrow
in peripheral vision, the executive process takes several additional steps:
it suspends tracking, moves the eyes to look at the arrow so that its iden-
tification can proceed, returns the eyes to look at the cursor, and resumes
tracking until a deferred-mode keypress response to the arrow has been
selected. As far as possible, this lets tracking continue simultaneously
with perceptual identification and response selection for the arrow.
Furthermore, as soon as possible after a keypress response has been
selected, the executive process also suspends tracking and permits the
keypress’s identity to be sent to the manual motor processor. Then
the keypress response is produced, the arrow-discrimination task is
terminated, and tracking is resumed again. Thus, this overlapped task-
scheduling model is similar to our previous model for the PRP procedure
(cf. figure 30.3).

Simulated Results Figure 30.4 shows simulated results from the pres-
ent model, whose mean RTs and RMS tracking errors closely approximate
those produced by actual participants. Unlike lockout scheduling, over-
lapped scheduling does not yield excessively large tracking errors.

Theoretical Implications The present model’s success supports our
claims about how executive mental processes may temporally overlap
visual, response selection, ocular motor, and manual motor operations in
multitask performance. Apparently, the types of control mechanisms and
scheduling strategies we have proposed for discrete concurrent (e.g.,
PRP) tasks also contribute to efficient performance of elementary contin-
uous tasks. These mechanisms seem to be used regardless of whether the
tasks involve the same (e.g., visuomanual) or different (e.g., auditory-
vocal and visuomanual) perceptual-motor modalities.

Compound Continuous Tasks

Our characterization of executive mental processes applies not only to
elementary but also to compound continuous tasks that entail several dis-
tinct subtasks. For example, Ballas, Heitmeyer, and Perez 1992 studied
concurrent visuomanual tracking and tactical decision making during
simulated military aircraft operations. In tracking, subjects plied a joy-
stick to superimpose a cursor over an evasive target plane. In tactical
decision making, subjects pressed finger keys to designate the hostility of
numbered icons that depicted jet fighters, bombers, and missile sites.
Because there were various types of icon and designation criteria, this
decision making constituted a compound task.
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To account for performance under these quasi-realistic conditions, we
have found that an EPIC model with a three-level hierarchy of executive
and task processes fits empirical data well (Kieras and Meyer 1997, forth-
coming; Meyer and Kieras, 1997b, 1999). As part of this model, a supra-
ordinate dual-task executive process provides overall supervision for a
tracking process, a display monitering process, and a tactical executive
process that coordinates three subprocesses—stimulus icon selection,
hostility response selection, and track-number response selection—in
tactical decision making. Through this hierarchical control, the relative
priority of tactical decision making and the temporal overlap of its sub-
processes are varied dynamically, contingent on the numerosity of poten-
tially hostile icons in the display. The model, with its adaptive scheduling
mechanisms, accounts well for observed sequences of tactical-decision
RTs and RMS tracking errors.

Interim Status Quo

From the preceding illustrations, it should be clear that EPIC yields
significant theoretical insights about executive mental processes.
However, our progress thus far has been limited in some major respects.

Limitations of EPIC Models One limitation is that the executive
processes of our models have been customized for particular task com-
binations. Although these processes may be somewhat similar across
contexts, their formulation has incorporated considerable task-specific
knowledge. For example, in modeling Martin-Emerson and Wickens
1992, we had the executive directly control eye movements from the
stimulus arrows to the tracking cursor (figure 30.5). This enhances track-
ing performance, consistent with available data, but makes the executive
context dependent and nonmodular, To be strengthened further, EPIC
needs general executive processes that are context independent.

Previous theorists have also stressed the importance of general execu-
tive processes, as in proposals about the “central executive” (Baddeley
1986) and “supervisory attentional system” (Norman and Shallice 1986).
Yet they have not provided explicit computational algorithms that
achieve the required generality. Thus we must look elsewhere for ways to
fulfill this need.

Accompanying EPIC’s lack of general executive processes is a second,
related deficiency. Competition among processes for access to limited
“hardware” resources may cause miscommunication or deadlock, in
which wrong information is transmitted or processes become perpetually
stalled (Stallings 1998). EPIC does not yet solve these concurrency prob-
lems adequately. Without adequate solutions, veridical modeling of com-
plex adaptive multitask performance will be impossible.
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A third limitation is that EPIC does not yet deal with procedural learn-
ing in multitask performance. How do people learn to schedule and coor-
dinate concurrent tasks efficiently? How are their multitasking skills
transfered across situations? Deeper answers are needed for modeling
skill acquisition and developing effective instructional techniques in
practical applications (Gopher 1993).

Potential Contributions of Operating System Fundamentals Fortun-
ately, contemporary computer operating systems may stimulate further
theorizing. Fundamental principles that underlie their operation provide
basic ways for implementing context-independent control and for solv-
ing problems of task concurrency (Stallings 1998). By considering these
fundamentals, we may augment EPIC with needed general executive
processes, concurrency solutions, and multitasking skill acquisition.

30.3 CONTEMPORARY OPERATING SYSTEMS AND COMPUTER
TECHNOLOGY

Contemporary operating systems supervise information processing
for task programs that are executed virtually or actually in parallel.
However, limited capacities of computer hardware impose constraints on
an OS trying to maximize process throughput. Consequently, we next
consider aspects of both hardware design and OS functions that bear on
these matters.

Hardware Design

Starting with early computers like ENIAC, hardware design has become
increasingly sophisticated (Tucker 1997). As a result, modern computers
typically have at least one central processing unit (CPU), at least one
memory unit, and various input/output (I/O) peripherals. The CPU
executes sequences of instructions for system and task programs. The
memory unit stores programs and data, letting them be manipulated in
similar ways. Thus generic information-processing capabilities are
implemented by the hardware, whereas overall system control and task
procedures are provided by the software.

Uniprocessor Architecture Many operating systems and task programs
are used on computers with one CPU. Although this uniprocessor archi-
tecture executes instructions sequentially in some respects, its compo-
nents enable extensive parallelism. For example, separate streams of data
may be transmitted simultaneously to or from different I/O peripherals,
and the CPU may perform multiple suboperations in parallel. Exploiting
such capabilities, an OS can sustain concurrent threads of processing at
least somewhat as if each program had its own CPU.
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Multiprocessor Architectures Moreover, some operating systems and
task programs have been implemented with multiple CPUs. These mul-
tiprocessor architectures enable true parallel processing and provide
enormous, relatively inexpensive, computational power. Particularly rel-
evant for us is the shared-memory symmetric multiprocessor (SMP), in which
multiple CPUs function as equivalent “peers” that share one memory
unit and I/O peripherals. This corresponds at least approximately to
EPIC’s organization. Although EPIC has one cognitive processor, it tests
conditions and executes actions of multiple production rules in parallel.
When programmed with two or more rule sets, the cognitive processor
emulates a collection of peer CPUs; as in a SMP, these rule sets share WM
and I/O peripherals.

Thus contemporary OS fundamentals should be applicable to EPIC.
Indeed, computer scientists have discovered that OS fundamentals are
extremely general, applying across many uniprocessor and multi-
processor architectures. This suggests that what OSs and EPIC teach us
will likely hold as well for the human mind and brain, which also
implement forms of multiprocessor parallelism. To appreciate OS funda-
mentals, more background about them is in order (see Stallings 1998;
Tucker 1997).

Operating System History

Like computer hardware, operating systems have become increasingly
sophisticated. For early computers (circa 1950), people loaded and
started programs manually. Subsequently (circa 1960), primitive OS resi-
dent monitors were developed to automate these processes. Following
this development, OS capabilities were gradually extended to enable
overlapping CPU and 1/0 operations so that the CPU would not have to
wait idly on slow mechanical devices. These advances led to multitask-
ing, an overarching OS function (circa 1970).

In multitasking, an OS interleaves or overlaps execution of task pro-
grams requiring certain limited hardware resources. When an execution
process has taken a set time or must wait for pending 1/0, it is sus-
pended, and the CPU is allocated to another process. After completion of
I/O or other prerequisites, the suspended process is resumed. Con-
sequently, multiple processes may advance efficiently without individ-
ual users’ intervention. Software for multitasking on uniprocessors has
been gracefully adapted for multitasking on multiprocessors.

Operating System Objectives
Systems programmers developed operating systems to keep CPU and

memory hardware as busy as possible, increasing process throughput.
OSs have also made it simpler and faster to formulate noncooperating task
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programs, which are executed asynchronously and compete for hardware
resources. Given OS services, such a program can be formulated as if it
were the only one executed and no intricate control of I/O were required.
Furthermore, OSs have facilitated the formulation of cooperating task pro-
grams, which are executed synchronously and share their products inter-
actively.

However, OSs are neither logically necessary nor maximally efficient in
every respect. Nonhierarchical “flat” programs can be formulated to per-
form multiple tasks concurrently on “bare” computer hardware without
OS support. Through this formulation, the computational overhead of
hierarchical software can be eliminated, and even faster performance
achieved. Nevertheless, such improvement has serious costs. Because it
requires dealing directly with many levels of control, the time and effort
needed to formulate flat programs can be exorbitant. Also, flat programs
do not readily generalize beyond their original applications. In contrast,
OSs provide a better compromise between speed of execution, on the one
hand, and ease and generality of software development, on the other.

Operating System Functions

This compromise is enabled by operating system functions that solve a
basic problem: detailed sequences of execution for independent task pro-
grams cannot be predicted accurately. An OS must ensure that execution
proceeds correctly and rapidly despite unpredictable interruptions and
resumptions. The solution entails judicious task scheduling, resource
allocation, process coordination, and conflict resolution.

Task Scheduling In task scheduling, an operating system must make
and implement decisions about when programs will be executed. Doing
SO requires prioritizing, preparing, initiating, suspending, preserving,
resuming, and terminating each execution process at apt moments. OSs
use various scheduling algorithms for this. Among them are “first come,
first serve,” “round robin,” “shortest remaining time,” “shortest process
next,” “highest response ratio,” and “least-time-consumed scheduling,”
each of which may produce relatively high or low performance, depend-
ing on nuances of the prevailing context. Task scheduling by an OS must
therefore be “tuned” adaptively to maximize overall throughput.

" u LA

Resource Allocation An operating system must also allocate hardware
resources judiciously to individual processes, depending on resource
availability and process needs. For example, during execution, a process
may request resources. If these are available, the OS may comply by allo-
cating them immediately. Alternatively, if they have been committed to
other processes already, then the OS may deny the current request tem-
porarily, and perhaps suspend the requesting process until its needs can
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be satisfied. Exactly when processes request and release their resources,
and how the OS handles them, contribute significantly to attained
performance.

Process Coordination Among the processes being executed, some may
need to share intermediate products of their computations. For this shar-
ing to succeed, these cooperating processes must be coordinated, because
interprocess communication involves writing to and reading from the
same memory locations in proper serial order.

To facilitate interprocess communication, an operating system per-
forms several coordinative functions, including mutual exclusion,
process synchronization, and message passing. Relying on these func-
tions, a receiving process may request that the OS suspend it until an
expected message arrives from another sending process. When the
sending process is ready to transmit this message, it may request that the

message be passed to the receiving process. The OS may then pass the
message and resume the receiving process.

Conflict Resolution Because concurrent processes impose high loads
on hardware resources and may be noncooperative, serious conflicts can
arise. An operating system has to avoid these conflicts as best it can, and
resolve them gracefully when need be. This function is crucial for dealing
with deadlocks, which entail closed chains of processes such that each
process currently has exclusive ownership of some resource needed by
the next process in the chain. Adaptive conflict resolution also helps deal
with other undesirable situations such as starvation, in which some low-
priority process is perpetually preempted by higher-priority processes.

30.4 COGNITIVE CONTROL AND OPERATING SYSTEM
FUNDAMENTALS

Contemporary operating systems embody precise and comprehensive
instantiations of executive processes. Such instantiations are scarce in
current psychological theories. Thus, to promote further progress, we
next discuss some stimulating theoretical concepts, multitasking models,
and explanatory hypotheses inspired by these considerations.

Theoretical Concepts

The concepts that interest us here involve distinctions between various
types of executive and task processes.3

Customized Executives One major distinction concerns customized

versus general executives. By “customized executive” (CE), we mean a
modular set of supraordinate mental processes that manage multitask
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performance based on unique context-dependent knowledge about the
particular tasks and their temporal interrelations. A CE works for only
one task combination and cannot be transferred readily across different
situations.

Thus far, EPIC models have all used CEs. An instructive case is our
model of performance in Martin-Emerson and Wickens 1992. The execu-
tive process of this model preallocates resources (i.e., ocular and manual
motor processors) to tracking and arrow discrimination without these
task processes requesting them explicitly (figure 30.5). The preallocation
is possible here because the executive already “knows” the task pro-
cesses’ needs and satisfies them in proper sequence. Such use of context-
dependent knowledge may be common after extensive practice under
conditions in which high performance is desired.

Our theorizing need not be confined, however, to models with CEs.
New EPIC models may be formulated on the basis of general executives
that function at least partly like contemporary OSs. From testing them
empirically, we learn more about the extent to which OS fundamentals
characterize how human multitask performance is controlled.

General Executives A general executive (GE) is a modular set of supra-
ordinate mental processes that manage multitask performance without
using unique context-dependent knowledge about the tasks and their
temporal interrelations. Given such generality, cognitive control can
be achieved for different task combinations through standard functions
like those of contemporary OSs. Implementing these functions in EPIC
is straightforward because it resembles a shared-memory symmetric
multiprocessor.

Nevertheless, determining whether a GE should be added to EPIC
requires answering a fundamental question about cognitive control: Do
people have GEs and use them for multitask performance? We might
expect an affirmative answer, given the potential ease of preparing and
efficiency of executing task programs based on GE functions. Yet the only
way to be sure about this is to formulate and test EPIC models that rely
on a GE. We take this course after introducing more distinctions that will
facilitate our pursuits.

Managerial Styles Another relevant distinction concerns managerial
styles of general executives. At one extreme, a conservative GE can have
a strict regimented style of scheduling task processes and allocating
limited resources to them. Under such regimentation, task processes may
have to request resources before using them; processes may be sus-
pended when their requested resources are unavailable; and processes
not prone to make deferent resource requests may be kept from starting
(i.e., locked out) until others have finished. Alternatively, a liberal GE can
have a tolerant, laissez-faire managerial style, under which task pro-
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cesses may be allowed to proceed at least partially unabated while their
requested resources are unavailable, and processes prone to use resources
without requesting them may also be accommodated insofar as possible.
In principle, a GE's managerial style is adaptable to particular situations.
Such adaptability, contingent on the “manners” of task processes, will
determine the attained level of multitask performance.

Process Manners and Etiquette Task processes can have various man-
ners of interaction with a general executive. Proper etiquette for a task
process entails requesting resources (e.g., motor mechanisms) immedi-
ately before they will be used, waiting for the GE’s permission to use
them, and then releasing the resources immediately after their use is com-
plete. A “polite process” conforms to all of these rules. This establishes
favorable circumstances for a laissez-faire managerial style through
which relatively high multitask performance is attainable.

Theoretically, however, some task processes may be impolite. For
example, a presumptuous process might use crucial resources without
requesting them. An impatient process might request resources but not
wait for permission to use them. A greedy process might request resources
too early and release them too late. Such inconsiderate conduct will force
a GE to be more conservative, curtailing the processes’ temporal overlap
and impeding their progress.

Cost-Benefit Assessment To assess the costs and benefits of alternative
general executive managerial styles, various factors are relevant. One is
interaction overhead, which includes scheduling, allocation, and abdication
costs for supervising task processes. Scheduling costs are amounts of time
consumed by adding and deleting goals in working memory to start, sus-
pend, resume, and terminate processes selectively. Allocation costs are
amounts of time consumed by making and fulfilling resource requests.
Abdication costs are amounts of time consumed by releasing resources.
Ideally, these costs should be paid in ways that decrease resource posses-
sion times, the amounts of time during which a task process possesses Cru-
cial resources. Also, as best they can, the payments should increase process
overlap intervals, the intervals during which multiple processes are
advancing simultaneously. |

Taking these factors into account, impolite task processes may escape
some interaction overhead, but they increase resource-possession times
and force the GE to eliminate process-overlap intervals. In contrast, a lib-
eral GE and polite task processes make an attractive compromise. Their
process-overlap intervals and resource-possession times may be rela-
tively long and short, respectively, thereby more than compensating for
the GE’s moderate interaction overhead.

Nevertheless, there are other ways to perform better on all scores. CEs
(customized executives) tuned for particular task combinations can
achieve even lower interaction overhead, shorter resource-possession
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times, and longer process-overlap intervals. As we shall see, this leads to
interesting hypotheses about multitasking skill acquisition.

New Multitasking Models

To illustrate how these theoretical concepts help clarify the nature of‘tog-
nitive control, we have implemented them in two new EPIC models for
Martin-Emerson and Wickens 1992. Model 1 has a conservative general
executive that supervises two impolite task processes. Model 2 has a
more liberal GE that supervises two polite task processes. By comparing
these models to our previous one that has a customized executive (figure
30.5), we examine the effects of managerial style and process manners on
multitask performance.

Model 1: Conservative General Executive with Impolite Processes
In model 1, tracking and arrow discrimination are assumed to be impo-
lite processes. They do not request or release resources for producing eye
and hand movements. Instead, each process tries to move the eyes and
hands without regard for what is happening elsewhere in the system, cre-
ating prospects for “jams” in EPIC’s motor processors.

To cope with this impoliteness, model 1 has a general executive that
uses a first come, first serve (FCFS) algorithm for scheduling the tracking
and arrow-discrimination task processes in strict lockout mode. Under it,
these processes may be started optionally when their stimuli (arrows and
suprathreshold tracking errors) are detected. However, the GE lets only
one process proceed at a time. If stimuli for both processes occur simul-
taneously, then the lower-priority one (tracking) is postponed until the
higher priority one (arrow discrimination) has responded to its current
stimulus.

This protocol resembles the one of Norman and Shallice’s “supervisory
attentional system” (SAS; 1986), in which action schemata are activated
by “trigger” stimuli and contend for limited response mechanisms.
Precluding conflicts from this “contention scheduling,” the SAS transmits
top-down activation to the highest-priority schema, favoring it over
lower-priority schemata. In our model 1, the lockout scheduling is like
the selective prioritization imposed by the SAS. Thus we may test both
model 1 and the SAS by comparing the performance of model 1 to real
data.

Table 30.1 shows results of this comparison. When a small visual
angle (<5 degrees) separates the displays of the tracking and arrow-
discrimination tasks, simulated RTs from model 1 are considerably less
than observed ones (mean difference =103 msec), but at larger angles
(>10 degrees), simulated RTs are considerably greater than observed
ones (mean difference =97 msec). Furthermore, the simulated RMS
tracking errors of model 1 are much larger than the observed ones; when
tracking is difficult, they differ by more than a factor of 2 at large visual
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angles. Model 1 performed very poorly even though under it, tracking
and arrow discrimination progress as fast as reasonably possible while
they are under way, and there are no resource allocation or abdication
costs of supervising them. Instead, the poor performance of model 1
stems from an absence of process overlap caused by its GE having to cope
conservatively with the impoliteness of the task processes in their use of
motor resources.

These results disconfirm both model 1 and the SAS with respect to
Martin-Emerson and Wickens 1992. Contrary to these models, under at
least some conditions, cognitive control for multitask performance is
more efficient than a conservative GE and impolite task processes allow.
We investigate the sources of this efficiency more fully by considering a
second new model.

Model 2: Liberal General Executive with Polite Task Processes In
model 2, tracking and arrow discrimination are assumed to be polite
processes. Each task process requests motor resources immediately
before it would use them, does not use them until the general executive
grants permission, and releases them immediately after they have been
used. Given this politeness, the GE lets these processes advance simulta- .
neously insofar as possible, even after one of them has requested
resources that the other is currently using. Such liberalism is feasible
because the task processes make eye and hand movements in a consider-
ate manner that avoids motor-processor “jams,” thereby enabling more
process overlap than model 1 allows.

Another virtue of model 2 is its straightforward flow of control.
Compared to our original model for Martin-Emerson and Wickens 1992
(figure 30.5), model 2 has a relatively simple flowchart (figure 30.6).
Consequently, during multitasking practice, the skill embodied in model
2 should be fairly easy to acquire.

Consistent with these points, table 30.1 shows that model 2 produces
somewhat better performance than model 1 does. Especially when track-
ing is difficult, simulated RMS errors from model 2 are markedly smaller
than those from model 1. Nevertheless, there remain significant discrep-
ancies between the performance of model 2 and the observed data. Both
the simulated tracking errors and simulated RTs are still excessively
large, suggesting that actual participants achieved even more process
overlap than model 2 allows.

Why and how might this be? An answer may come from reconsidering
our original model for Martin-Emerson and Wickens 1992 which we now
call “model 3.”

Model 3: Customized Executive with Resource Preallocation and
Enhanced Task Processes As depicted before (figure 30.5), model 3
uses a customized executive that exploits context-dependent knowledge
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Figure 30.6 Flowchart of an EPIC model that performs the tracking and arrow-
discrimination tasks of Martin-Emerson and Wickens 1992 with polite task processes and a
genceral executive whose managerial style is liberal in task scheduling and resource alloca-
tion (cf. figure 30.5).

about the tasks and their temporal relationships. Based on this knowl-
edge, the customized executive preallocates resources (i.e., ocular and
manual motor processors) to tracking and arrow discrimination without
being requested to do so. This enables the task processes to advance even
more quickly than under model 2. Under model 3, the task processes also
prepare eye movements beforehand. Together, these enhancements fur-
ther facilitate performance so that the simulated RTs and tracking errors
of model 3 are considerably less than those of model 2, closely approxi-
mating observed data (table 30.1).

The good fit of model 3 suggests that participants in Martin-Emerson
and Wickens 1992 achieved excellent multitask performance through
especially efficient cognitive control. Without this efficiency, limitations of
perceptual-motor mechanisms would have precluded such performance.
The customized executive of model 3 overcomes these limitations more
so than a general executive can. Nevertheless, during the course of prac-
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tice, participants may have relied on a GE to acquire their high level of
multitasking skill. How this could happen is considered next.

Hypotheses about Skill Acquisition

Taken together, our results from models 1, 2, and 3 lead to hypotheses

that explain various major aspects of multitask performance and skill
acquisition.

Multitasking Skill-Acquisition Stages We hypothesize that multi-
tasking skill acquisition progresses through five stages: preprocedural
interpretative multitasking (stage 0); general hierarchical competitive
multitasking (stage 1); general hierarchical cooperative multitasking
(stage 2); customized hierarchical multitasking (stage 3); and customized
heterarchical multitasking (stage 4). Each of these stages can be char-
acterized with respect to its degree of efficiency, types of interaction
between executive and task processes, and exploitation of context-
dependent procedural knowledge.

Preprocedural interpretive multitasking is necessitated by a funda-
mental dependence between procedural and declarative task knowledge.
We call this “stage 0” because it occurs at the start of practice before sets
of production rules for the particular tasks have been created. During
stage 0, people must use a generic interpretive process to execute propo-
sitional instructions about how the tasks should be performed. Here per-
formance is presumably slow and error prone, placing heavy loads on
working memory as people “think” their way verbally through each task.
Nevertheless, it is from this explicit directed intentional activity that more
efficient procedural knowledge for subsequent task performance emerges
(Anderson 1983; Bovair and Kieras 1991; Kieras and Bovair 1986).

Once such knowledge becomes available, general hierarchical compet-
itive multitasking may ensue. We call this “stage 1” because it is the first
stage during which a general executive supervises task processes that are
executed through individualized sets of production rules. Also during
stage 1, task scheduling and coordination are managed as in our model 1
for Martin-Emerson and Wickens 1992. Here performance presumably
entails a conservative GE with strict lockout scheduling of impolite task
processes whose manners in using perceptual-motor resources are im-
pulsive, presumptuous, and greedy. This impoliteness may be attributed
to a need for more practice in order to acquire rules that conform with
proper task etiquette.

As practice continues, general hierarchical cooperative multitasking
may come next. During what we call “stage 2,” task scheduling and coor-
dination would be managed as in our model 2. Here performance pre-
sumably entails a liberal GE with temporal overlapping of task processes
that request, use, and release system resources politely. This politeness
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enables the GE to be more permissive in letting these processes advance
rapidly toward completion.

Customized hierarchical multitasking would involve an even higher
skill level. During what we call “stage 3,” task scheduling and coordina-
tion may be managed as in our model 3. Here unique context-dependent
knowledge about the particular tasks and their temporal interrelations
presumably is exploited to preallocate system resources without time-
consuming requests for them, thereby further increasing temporal over-
lap among task processes. Also, as in model 3, these processes may be
enhanced to prepare their motor responses anticipatorily.

Culminating this evolution is customized heterarchical multitasking,
During what we call “stage 4,” performance presumably is controlled
without supraordinate executive processes. Instead, the task processes
interact directly with each other, self-governing their resource usage as
cfficiently as possible. This interaction optimizes overall system through-
put, completely climinating scheduling, allocation, and abdication time
costs that contribute to the transaction overhead of hierarchical cognitive
control.

Table 30.1 shows some benefits of such optimization. Here we have
included results from a fourth model (“model 4”) that uses the cus-
tomized heterarchical multitasking of stage 4 to simulate performance in
Martin-Emerson and Wickens 1992. The RMS tracking errors of model 4
closely approximate the data, and its mean RTs are even shorter than
observed ones. Although the subjects in Martin-Emerson and Wickens
1992 were highly skilled, they apparently had not yet reached this ulti-
mate asymptotic performance level.

Executive Learning Mechanisms Operations within and transitions
between the preceding five stages of multitasking skill acquisition may
be mediated by various executive learning mechanisms (cf. Anderson
1983; Bovair and Kieras 1991; Chong and Laird 1997; Kieras and Bovair
1986). These mechanisms may entail several components: a task inter-
preter, which executes propositional instructions for performing single
and multiple tasks during stage 0; a task compiler, which creates rudimen-
tary sets of production rules for the initially impolite task processes of
stage 1; a task socializer, which makes these processes more polite in stage
2; an executive modulator, which tailors the general executive’s manage-
rial style to be either conservative or liberal, depending how polite the
task processes are; an exccutive customizer, which creates customized
executives to enable even more efficient control in stage 3; and an execu-
tive integrator, which “flattens” the CEs, converting their flow of control
from a hierarchical to heterarchical organization in stage 4.

We hypothesize that such mechanisms are sensitive to the evolving
characteristics of performance. For example, during stage 1, simultane-
ous attempts by multiple impolite task processes to produce movements
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in the same response modality could generate motor-processor “jams.”
These jams might be detected by the executive modulator, leading it to
have the GE be conservative during the period of time when the task
socializer works toward making the task processes more polite. The task-
socializer and executive modulator also could operate partly on the basis
of noticing that the task processes do not request and release resources
properly. Later, after the task socializer achieves its objectives, the execu-
tive modulator perhaps would adjust the GE to be more liberal because
motor-processor jamming has ceased. Accompanying the latter adjust-
ment, the executive customizer might start creating a CE that later trig-
gers hierarchical-to-heterarchical flattening by the executive integrator.
Of course, future research will be needed to understand and model the
details of such hypothetical learning mechanisms.

Multitasking Skill-Acquisition Phenomena By doing so, we may
eventually explain and predict many empirical phenomena of multitask-
ing skill acquisition. For example, Gopher (1993) has found that multitask
performance is better after variable-priority rather than fixed-priority
training. In his fixed-priority training condition, one group of partici-
pants gave equal priorities to visuomanual tracking and choice-reaction
tasks throughout a series of practice sessions. In his variable-priority
training condition, a second group of participants also gave the two tasks
equal priorities on some occasions, but devoted higher priority to either
tracking or choice reactions on other occasions. After variable-priority
training, the second group performed better than the first group even
when the two tasks received equal priorities. Similar results have been
reported by Meyer et al. (1995). The benefits of variable-priority training
could stem from the task socializer and executive modulator receiving a
wider range of feedback, which guides them more quickly through suc-
cessive stages of skill acquisition.

Our hypotheses likewise account for results obtained with some other
laboratory paradigms. For example, RTs from the PRP procedure some-
times manifest a response-selection bottleneck (Pashler 1994, chap. 12,
this volume). This seems to occur especially when participants receive
relatively little practice at coordinating their primary and secondary tasks
(Schumacher et al., 1999). A possible reason is that participants lack
sufficient opportunity to socialize initially impolite task processes, so
their GE has to deal with this impoliteness through strict lockout sched-
uling (cf. Meyer and Kieras 1997a,b).

30.5 CONCLUSIONS

Assimilating the fundamentals of contemporary computer operating sys-
tems into theories of cognitive control will make it possible to character-
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ize a wider range of control functions more precisely, and to test more
definitively for the existence of general as well as customized executive
processes. These advances also will lead to more detailed and veridical
analyses of multitasking skill acquisition. Computational modeling
based on the EPIC architecture provides one vehicle whereby this
progress can occur.

For the present prospects to be fully realized, future research must use
a wide variety of empirical procedures to investigate multitask perfor-
mance. This investigation should extend beyond basic laboratory para-
digms like the task-switching and PRP procedures, which are helpful for
isolating particular elementary control functions, but come nowhere near
to engaging the whole host of executive mental processes that people
presumably have. Rather, to explore these processes more completely,
overlapping-task procedures with complex realistic tasks and unpre-
dictable stimulus-response event sequences will be needed (e.g., Ballas,
Heitmeyer, and Perez 1992).

Another major path for future research will involve identifying sys-
tematic relationships between underlying brain mechanisms and the
cxecutive mental processes revealed by taking operating system funda-
mentals into account. Because OS fundamentals apply quite generally to
shared-memory symmetric multiprocessors, of which the brain is
perhaps one type, it seems reasonable that the brain implements these
fundamentals as well. If so, then insights from EPIC computational mod-
cling, applied to results from studies of brain imaging and focal lesion
analysis, could eventually yield fundamental solutions to the mind-body
problem of cognitive control.

NOTES

Funding for this rescarch was provided by U.S. Office of Naval Research grant N00014-92-
J-1173 to the University of Michigan. We thank David Fencsik, Darren Gergle, Jennifer
Glass, Leon Gmeindl, Cerita Jones, Shane Mueller, Eric Schumacher, Mollie Schweppe, and
Travis Seymour of the Brain, Cognition, and Action Laboratory at the University of
Michigan for their helpful assistance. Comments by Leon Gmeindl, Stephen Monsell, Travis
Seymour, and two anonymous reviewers on drafts of this chapter are greatly appreciated.

1. First-task responses yielded a similar pattern of results. Although mean reaction times
decreased across sessions, their pattern did not change qualitatively with practice. No
significant asymmetries occurred in switching time costs. Error rates were moderately low
(<10%) on average and correlated positively with mean RTs, suggesting no systematic
speed-accuracy trade-offs.

2. Our model also accounts well for mean first-task RTs and the factor cffects on them.

3. Insofar as we know, the distinctions described here have not been made explicitly in
operating system textbooks. They are introduced here to address issues about human cog-
nitive control, which extend well beyond those associated with computer applications
where experienced task programmers adhere consistently to common a priori conventions.
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