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ABSTRACT
Being able to predict the performance of interface designs 
using models of human cognition and performance is a 
long-standing goal of HCI research. This paper presents 
recent advances in cognitive modeling which permit 
increasingly realistic and accurate predictions for visual 
human-computer interaction tasks such as icon search by 
incorporating an “active vision” approach which 
emphasizes eye movements to visual features based on the 
availability of features in relationship to the point of gaze. 
A high fidelity model of a classic visual search task 
demonstrates the value of incorporating visual acuity 
functions into models of visual performance. The features 
captured by the high-fidelity model are then used to 
formulate a model simple enough for practical use, which is 
then implemented in an easy-to-use GLEAN modeling tool. 
Easy-to-use predictive models for complex visual search 
tasks are thus feasible and should be further developed.
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INTRODUCTION
Visual search pervades everyday computer usage, such as 
the simple task of finding an icon on a smartphone. Icons 
that are always in the same location on the home screen and 
used often will be found quickly, but icons that are used 
occasionally or that change their position often as new 
applications are added will require visual search. Designing 
systems that support faster visual search will improve 
usability.

Figure 1 shows four pairs of icons from the Apple iPhone. 
Each pair shows two icons used for the same application, an 

older version (on the top or left of each pair) and a recent 
redesign (on the bottom or right of each pair). Each 
redesign does a better job of emphasizing the primary 
visual features of color, shape, and size (rather than detailed 
visual information) and is thus easier to distinguish than the 
older version in the near periphery. This can be seen by 
trying to describe each icon while holding your gaze fixed 
on the crosshairs. Vision psychology has long understood 
that, for objects that are away from the point-of-gaze, the 
primary visual features such as color, shape and size can be 
more easily perceived than the detailed features, and that 
primary features are thus very effective for guiding the eyes 
in visual search [30]. But not all visual designs utilize these 
human abilities.

Graphic designers discuss visual designs such as the icons 
in Figure 1 using terms such as “clutter” versus 
“simplicity” [22] perhaps without realizing that in part what 
they are discussing is which visual features can be 
perceived at a shorter eccentricity (angular distance from 
the point of gaze), which will in turn lead to more efficient 
eye movements. Interface design can benefit when 
designers, including anyone designing a web page, 
understand fundamental human performance abilities, but 
this is often not practical. For as long as human-computer 
interaction has been studied, researchers have been working 
to address this problem by developing theoretical models 
and design tools that simulate people using computer 
interfaces to do tasks, so that these simulations can stand in 
as real users early in the design cycle to help guide a 
designer to a usable interface that will fit well with 
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Figure 1. A set of icons from the iPhone interface.
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fundamental human perceptual, cognitive, memory, and 
motor abilities [4, 27]. 

Some cognitive modeling research focuses on developing 
the cognitive architectures (the software frameworks for 
building the models)  and identifying appropriate parameters 
and settings for general classes of models, such as [7, 9, 20, 
27, 28]. Other work aims more at making the modeling 
easier to use for everyday designers, such as GLEAN [21], 
Distract-R [25], and perhaps most notably the CogTool 
project [2, 12, 14, 27]. The work presented here contributes 
to both fronts, first introducing and validating an innovation 
that permits a cognitive architecture to more accurately 
simulate human vision, and then showing this innovation 
implemented and used within an easy-to-use modeling 
environment.

The modeling work presented here, partially reported 
previously in [16], goes beyond previous cognitive 
modeling of icon search (such as [7])  by incorporating a 
more advanced simulation of visual perception and ocular 
motor processing, and stands in contrast with mathematical 
modeling of human performance (such as [5])  in which 
empirically-derived relationships such as Fitts' Law are 
used to explain features of performance data without 
reference to the underlying cognitive architecture 
mechanisms in the human user; rather, architecture-based 
approaches seek to develop and apply a reusable unified 
theory in human-computer interaction [4, 20]. 

This paper presents cognitive models of a visual search task 
akin to icon search. First, the search task is described. 
Second, a high fidelity model is built using the EPIC 
cognitive architecture [20]  to explore perceptual parameter 
and other settings necessary for the task. Third, the key 
components of the model are extracted and carried over to a 
lower-fidelity modeling environment, GLEAN [21], which 
lends itself to use by practitioners. The paper provides a 
specific approach for predicting visual search performance 
in HCI tasks that could be integrated into easy-to-use 
predictive analysis tools, complements and advances other 
approaches for predicting visual performance in HCI visual 
search tasks, and demonstrates the value of building these 
models using a cognitive architecture that distinguishes the 
human invariants from the task-specific knowledge.

THE TASK
This modeling work applies contemporary modeling 
techniques to explain a data set from the literature, in this 
case a very early eye movement study of visual search 
published by Williams in 1966 [29, 30], who ventured into 
experimental territory commonly avoided even today. The 
task involved visual search of a very large number of 
objects varying in size, color, and shape, each with a unique 
two-digit label. The 100 objects consisted of all 
combinations of 4 sizes, 5 colors, and 5 shapes. 

Figure 2 shows a re-creation of a small portion of a search 
field used in the experiment. The entire display is 39° ⨉ 39° 
of visual angle. Search objects ranged from 0.8° to 2.8° in 
size and were randomly distributed across the field. 
Participants were precued with the numerical label of the 

target. The key to the experimental design is this: On most 
trials, participant were also precued with some combination 
of the color, size, and shape features of the target. For 
example, in Figure 2, if the target is the large triangle at the 
center, the precue could be just “59” (the number-only 
precue)  or “blue 59” (the color-only condition) or “very 
large triangle 59” (the size and shape condition). All 
combinations of size, color, and shape precues were tested 
in addition to the number-only precue. The specifications 
appeared first in the center of the display; when a button 
was pressed, the search objects were added to the display. 
The participant pressed another button when he or she had 
located the specified object.

Eye movements were recorded with a corneal-reflection 
film camera system and scored by hand. The total number 
of fixations were counted, and classified by whether they 
fell on objects whose size, color, and shape matched the 
specifications. The hypothesis is that if a specification is an 
effective precue for visual guidance, more fixations should 
be on objects matching the precue than expected by chance. 
Williams approximated reaction time (RT) measures by 
counting the number of fixations and dividing by 3.25, the 
observed average number of fixations per second.

The Observed Data
Figure 3 shows the average number of fixations that 
participants needed to find the target for each of the eight 
precue conditions. The most pronounced effect is that the 
target can be found with the least number of fixations any 
time that color is specified in the precue. Specifying size 
helps less to reduce the number of fixations. Specifying 
shape helps only a little.
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Figure 2. A reproduction of a portion of the display used in the 
Williams (1966) visual search experiment. The user’s task was 
to search for an icon given a number and some combination of 

color, shape, and size. For example, for the trial shown here, 
the precue might be “small green 23”.
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Figure 4 shows the proportion of fixations that landed on 
objects that had a feature specified in the precue, for each of 
the eight precue types. This shows the most interesting 
phenomenon captured by the Williams experiment, that 
during visual search participants tended to look at objects 
with whatever features were included in the precue. They 
especially did this for color. When no features were 
specified in the number-only condition, there was a chance 
likelihood that fixations landed on the correct color, size, or 
shape (which was respectively 20%, 25%, and 20%). When 
color was specified, roughly 60% of the fixations were on 
objects with the target color. Specifying the size also helped 
participants to increase their fixations on objects of the 
target size. Specifying the shape did not help much. Fewer 
fixations were needed because the fixations that were made 
were more likely to land on the target.

It is clear from the results that color is the strongest cue for 
visual guidance, resulting in the highest proportion of 
fixations on matching objects (about 0.6) and the fewest 
fixations (about 20). Size comes next, and shape is a distant 
third. There is a tendency for each precue to have a smaller 
effect if a stronger precue is also present. If only the label is 
provided (the number-only precue), the fixations on objects 
that match the target properties is at chance level, and the 
number of fixations is large (about 72).

The data reveal a high number of repeat fixations. If every 
object that was examined received exactly one fixation, on 
average half of all candidate objects would be examined. 
For example, in the number-only condition, on average fifty 
objects would be fixated. This implies some form of 
inefficiency or unreliability in the search process, wherein 
objects are looked at repeatedly and at a very high rate. For 
example, the 72 fixations in the Number-only condition 

implies a repeat rate of about 30%. Williams reports a small 
number (3%)  of immediate repeat fixations, but does not 
report repeat fixations over longer time periods. 

In contrast, recent observation (such as Peterson et al. [24]) 
and modeling [15] of repeat fixations suggests that repeat 
fixations are relatively rare, around 5%, implying a good 
memory for previous fixations, and almost all are 
performed immediately, being due to recognition 
(encoding) failures rather than failures of the memory for 
previous fixations. However, these results were obtained in 
search tasks involving many fewer objects and that took 
much less time than Williams' task. Perhaps the much 
higher repeat rate in these results is due to time decay of the 
fixation memory. In fact, in Peterson's task, repeat fixations 
at long lags become more frequent if the trial has gone on 
for an usually long time [Peterson, personal 
communication]. This issue will be important in modeling 
the Williams data.

Williams did not report confidence intervals nor apply 
conventional statistical analyses for what is basically a 
descriptive study. However, the reported details imply that 
there are many thousands of fixations underlying the 
reported proportions, so their binomial confidence intervals 
would be almost invisibly small on these graphs. Thus we 
can take the data as being very reliable statistically. 

THE MODELING APPROACH

Active Vision
The modeling approach used here closely follows the 
notion of active vision which is argued eloquently by 
Findlay and Gilchrist [6] and which characterizes visual 
behavior in terms of the eye movements that are made to 
reorient the high-resolution vision at the center of the gaze 
to different items of interest. Active vision is markedly 
different from traditional approaches to visual attention 
which have ignored both the role of eye movements and 
extra-foveal information (information within roughly 2° to 
10° of the point of gaze)  and which have relied primarily on 
RT rather than eye movements as the primary dependent 
measure.

A key process in any visual search task is choosing the next 
object for inspection. A variety of studies (see [6] for a 
review) have shown that this choice is strongly influenced 
by the color, shape, size, orientation, and other visual 
properties of nearby objects. This phenomenon is called 
visual guidance. In the active vision framework, these 
properties are available in extra-foveal or peripheral vision 
to some extent, meaning that visual attention, which in the 
context of normal visual activity is almost synonymous 
with where the eye is fixated, is a process of selecting for 
detailed examination one of a large number of objects 
currently perceived to be in the visual scene, and doing this 
selection on the basis of the visual properties available in 
extra-foveal vision.

Though the importance of color in visual search is well-
documented [26], in the active vision framework, color is 
not specially privileged in some way, but rather, various 
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Figure 4. The proportion of fixations landing on objects with 
the features specified in the precue, for the eight precue types.
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Figure 3. The average number of fixations observed for each 
precue type from the Williams experiment [29, 30].
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direct measurements simply show that the color of an object 
is visible over a wide range of eccentricity and object sizes 
(e.g. [8]), and so can often serve as an effective cue about 
where to look next. The relative ineffectiveness of shape is 
likewise not due to a fundamental problem with shape, but 
rather that in many cases recognizing the shape requires 
resolving detailed features that can only be seen close to the 
fovea. As an extreme of shape recognition, the text label 
involves very fine features requiring foveation unless the 
text is very large [1]. 

The EPIC Cognitive Architecture
The Williams results can be modeled using the EPIC 
(Executive Process-Interactive Control)  architecture for 
human cognition and performance [19, 20]. EPIC provides 
a general framework for simulating a human interacting 
with an environment to accomplish a task, and directly 
supports an active vision approach to visual search as 
demonstrated in [9].

The EPIC architecture consists of software modules for the 
simulated task environment or device that interacts with a 
simulated human, which consists of perceptual and motor 
processor peripherals surrounding a cognitive processor. 
The device and all of the processors run in parallel with 
each other. To model human performance in a task, the 
cognitive processor is programmed with production rules 
that implement a strategy for performing the task. When the 
simulation is run, the architecture generates the specific 
sequence of perceptual, cognitive, and motor events 
required to perform the task, within the constraints 
determined by the architecture and the task environment. 

Figure 5 shows the visual system of EPIC. The eye 
processor explicitly represents differential retinal 
availability in terms of acuity functions that specify whether 
each visual property (feature) of each object is currently 

visible as a function of the size of the object and its 
eccentricity. The currently available visual properties for 
each object are represented in the sensory store; the 
perceptual processor then encodes the properties of each 
object, possibly in relation to other objects, and passes the 
encoded representation on to the perceptual store where 
they are available to the cognitive processor to match the 
conditions of production rules. The perceptual store thus 
contains the current representation of the visual world that 
cognition can make decisions about, including decisions 
about where to move the eyes next by commanding the 
voluntary ocular motor processor. The perceptual store 
retains the representations for all objects currently visible, 
with more information and detail available for objects that 
have been fixated.

There are two senses of size in this model: the physical size 
of the object in degrees of visual angle and its encoded size 
which corresponds to the precue specification from small to 
very large. The acuity functions use the physical size of the 
object to determine whether visual features (including the 
encoded size) is perceptually available given the object’s 
eccentricity, and the strategy uses the encoded size to focus 
the search when that feature is available.

Persistence of the visual perceptual store

When the eyes move away from an object, the properties of 
the object persist in the sensory store for a short time (e.g. 
200 ms) after which the perceptual processor notes that the 
property in the perceptual store no longer has sensory 
support. After a relatively long time, the property is 
removed from perceptual store. However, if the the object 
disappears completely, the object and its properties will be 
removed from the perceptual store fairly quickly.

The concept is that as the eyes move around the visual 
scene, a complete and continuous representation of the 
objects in the scene is built and maintained in the perceptual 
store, allowing the cognitive processor to make decisions 
based on far more than the properties of the currently 
fixated object. The notion that this information persists for a 
considerable time as long as the scene is present is 
supported by studies summarized by Henderson & 
Castelhano [10] in which subjects are tested for their 
memory of a previously fixated object and retention times 
of at least several seconds long are observed.

Figure 6 illustrates how visual information flows through 
EPIC’s physical, sensory, and perceptual stores by showing 
the contents of these memories at a single point in time. The 
left panel shows the physical store—an encoding of all 
objects and features in the world. The gray concentric 
circles at the bottom left show the current location of 
EPIC's eyes, currently on the yellow cross 88. The small 
gray circle has a 1° radius corresponding to the fovea; the 
larger gray circle is a calibration ring of 5° radius. This 
view of the physical store permits a person running a model 
to monitor its progress; high fidelity with the original visual 
display is not needed. The middle panel shows the sensory 
store—the objects and features that are currently visible to 
the eyes. Feature availability is determined by the acuity 
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Figure 5. EPIC's visual system.
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function. The right panel shows the perceptual store—the 
visual information that has persisted from the last few gaze 
fixations on the other objects whose numbers are visible.

THE EPIC MODEL
Constructing an EPIC model for the Williams task required 
a choice of (1)  visual acuity parameters, (2) a parameter for 
the decay time of visual properties in the perceptual store 
that are no longer sensorily supported, and (3) a set of 
production rules that implement the visual search strategy. 
The strategy and the values for the parameters were varied 
in a manually conducted iterative search to maximize the 
goodness of fit to the data. Each of these model inputs will 
be described briefly.

Acuity functions
Visual acuity functions were specified for the size, color, 
shape, and text properties to model how visual properties 
can be recognized in peripheral vision depending on the 
eccentricity, size, and property involved. The functions are 
derived from the literature on visual perception (such as [1, 
8]) which show how, in the periphery, the features of larger 
objects are more recognizable than the features of smaller 
objects. An object’s color is more visible in the periphery 
than the object’s shape, which in turn would be more visible 
than the object’s text label whose small size would require a 
fixation to be recognized. Text acuity is thus specified as 
being available within 1° of the current eye position, 
corresponding to the conventional definition of foveal 
vision. For other features, a quadratic psychophysical acuity 
function determines the availability of object properties 
based on the eccentricity and the size of the object, with 
some random noise added. Thus, the size, color, and shape 
functions are quadratic threshold functions for object size s 
that depend on eccentricity e and a random noise 
component X, specified as follows: 

threshold = ae2 + be + c
P(available) = P(s + X > threshold)
X ~ N(s, vs)

Since comprehensive parametric data on extra-foveal acuity 
for different visual properties is lacking in the empirical 
literature, the parameters for these functions were 
determined with an iterative search in which the acuity 
function parameters and retention time were adjusted to 
maximize the goodness of fit with the observed data.  
Because the differences in availability are strongest at 
larger eccentricities and because these differences are 
primarily determined by the quadratic coefficient of the 
acuity function, the other parameters of the acuity functions 
were kept constant to simplify the parameter search. 

Figure 7 shows the availability functions for color, size and 
shape that were used in the model. The functions were set 
with parameter values of v=0.7, b=0.1, c=0.1 for all three 
features, and the parameter of a was set to 0.035 for color, 
0.2 for size, and 0.3 for shape. The functions converge to 
0.9 at 0° to provide for an optional 10% encoding error, 
analogous to the encoding errors used in previous models 
[9, 15, 18], though this was not used in this model. Instead, 
an additional step function was imposed at 1° such that, like 

Figure 6. A snapshot of EPIC’s physical, sensory, and perceptual stores. The eyes are currently fixating the yellow cross 88.
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 Figure 7. The acuity functions used in the EPIC model. 
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the text property, color, size, and shape were also fully 
available in the fovea.

The availability for every property of every object is 
recomputed whenever the eye is moved. The sensory store 
in Figure 6 shows what is currently available around the 
fixation point after several fixations. Objects whose 
location, but no other properties, are known are represented 
as light gray open circles. Objects which are close enough 
to the current fixation point to have their color available, 
but not their shape, are represented as colored open circles.

Perceptual store persistence time
Once a property of an object is visible, that property is 
attached to the object representation in the visual perceptual 
store where it can serve to match conditions of production 
rules. The visual perceptual store is persistent in that as long 
as an object is within the visual field, its properties, once 
acquired, will persist for up to several seconds even after 
the eyes move [10], and can thus serve as a memory for 
previous fixations [15]. The perceptual store in Figure 6 
shows EPIC's perceptual store several seconds into the 
visual search. The duration parameter was estimated 
iteratively, starting with the 4 s lower bound determined in 
[15]. The reported results here used a value of 9 s.

Task strategy
The visual search strategy in the model is an application of 
a basic strategy, shown in Figure 8, that has been used in 
several EPIC visual search models (such as [11]). There are 
two threads of execution: (1) Nomination rules in the first 
thread propose objects to fixate based on available visual 
properties, and also nominate a random choice. Choice 
rules then pick a single candidate from the nominated 
objects according to a priority scheme, and launch an eye 
movement to the chosen candidate. The nomination thread 
then either starts over, or terminates if the other thread had 
found the target. (2) Comparison rules in the second thread 
wait for all relevant properties of the fixated candidate to be 
fully visible and either respond if it is a target, or discard 
the candidate if not. Given the typical 100 ms transduction 
and encoding times for visual properties and the 50 ms 
production rule cycle time, the overlapped processing 
provided by the two threads enables the time between 
successive eye movement initiations to be short, about 250 
to 300 ms, which is commonly observed in high-speed 
visual search tasks.

For the Williams model, the strategy nominates candidate 
objects that have the precued properties, such as the 
precued color or shape. The fixation memory effect is 
implemented by only nominating objects whose text 
property is unknown—not currently present in the visual 
perceptual store—either because the object was never 
fixated or because it was fixated a long time ago and the 
representation has decayed The priority scheme for 
choosing a fixation target was originally implemented as 
picking the object with the most matching properties, which 
required a large number of rules for each combination. 
However, the acuity functions dictate that if color is 
available, shape and size are not very relevant. So a more 

parsimonious single-property priority scheme that mirrors 
the relative acuities is used in this version of the model: An 
object with a matching color is chosen over one with a 
matching size over one with a matching shape. This scheme 
is an optimization to favor the most-available information 
over the-less available information. 

EPIC MODEL RESULTS
The model was run for 500 trials in each experimental 
condition, which was determined to produce stable 
predicted values, and the predicted eye movement and 
response time data were compared to the observed data. 

Figure 9 shows the predicted and observed proportion of 
fixations that landed on objects that had a feature specified 
in the precue, corresponding to Figure 4. Clearly the fit is 
very good using the acuity function and perceptual store 
persistence parameters listed above; R2 = .99; average 
absolute error (AAE) = 3%. 

Figure 10 shows the predicted and observed number of 
fixations. Again there is a very good fit (R2 = 0.98, AAE = 
12%). The observed and predicted RTs in Figure 11 fit well 
(R2 = 0.98 and AAE = 9%), although there is a general 
tendency for the model RTs to run slightly longer than 
Williams' results. Given the unusual methodology used to 

Figure 8. Flowchart for the search task strategy. 
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measure the RTs, it is not clear that attempting to improve 
the fit would be worthwhile.

In an analysis of the model output, the proportion of repeat 
fixations was found to increase substantially as the 
perceptual store duration was decreased, and the number of 
fixations increased. The persistence parameter was adjusted 
to produce the overall good fit on the number of fixations 
shown in Figure 10, and the proportion of repeat fixations 
on search objects was then determined with the final 
parameter value. The range was 11% repeats in the best 
condition to 33% in the Number-only condition. This 
proportion was highly linear with the predicted number of 
fixations, with an intercept = –.03, slope = 0.01, and R2 = 
0.95. Thus the loss of fixation memory over time accounts 
for the excess number of fixations in the data.

Generality of the strategy and obtained parameter values
The three inputs to the model were the acuity functions, the 
perceptual store persistence time, and the task strategy. 
Each of these contribute to the fit of the model: The task 

strategy makes use of the most visible properties of the 
objects to guide the search efficiently and uses the 
persistent information in the visual store to avoid repeat 
visits to objects, but the effectiveness of this depends on 
how long the information persists. This task strategy should 
generalize to visual search tasks in which the visual field 
lacks an overall structure to guide the search, and the target 
has to be located based on its visual features. The strategy, 
acuity function parameters, and persistence time parameter 
should apply to similar tasks such as with radar displays 
using military-standard icons (such as in [23]).

But other displays would likely require different acuity 
parameters and a variation on the task strategy. For 
example, some of the complex icons used in desktop and 
mobile devices, such as the older icons in Figure 1, lack a 
dominant color. Many icons also lack a distinguishing size 
or shape. If no distinguishing features are visible in the 
periphery, then a strategy that uses such features would be 
less useful, and performance might be more like the 
number-only condition in this study.

High-Fidelity Model Success
The success of this EPIC model to account for the Williams 
data means that a very demanding search task can be 
described with an architecture and model based on active 
vision principles—different visual properties are 
differentially effective in visual search primarily because 
they have different visual acuity characteristics. In addition, 
the capacious but limited memory for previous fixations 
will fail more often if the search task goes on for a long 
time, resulting in inefficient repeat fixations on objects. All 
these factors can be explained with the EPIC model, using 
architectural features, parameter values, and strategies 
similar to those used to model other search tasks.

THE CHALLENGE FOR PRACTICAL MODELING
Applying models of human performance in the evaluation 
of interface designs has been a important goal for HCI 
theory since Card, Moran, and Newell's seminal work [4, 
17]. However, there is a difficult tradeoff between the high-
fidelity models like EPIC that are central to the research 
effort of modeling human performance, and practical low-
fidelity easy-to-use models necessary for HCI application. 
GOMS modeling is the most common example of such a 
practical approach, and has a track record of model 
successes that are both scientifically valuable and 
practically useful [13, 14]. The key important characteristic 
of these practical model techniques is ease of model 
construction which requires first, a simple modeling 
language (as in GOMS) that is far easier than production 
rules, and second, that the details of psychological 
processes must be thoroughly encapsulated in the modeling 
system [17]. So can visual search times be predicted to a 
useful degree with a very simple model?

Guidelines for Low-Fidelity Prediction of Visual Search
The empirical literature on visual search, together with the 
modeling results of this task and others in the EPIC 
framework, identifies several characteristics of visual 
search that can serve as guidelines for a simple and 
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practical method for predicting visual search. These 
guidelines are as follows:

1. In general, sample objects without replacement so that 
they are seldom revisited. The empirical results, explained 
by the model mechanisms of encoding failures and memory 
for previously fixated objects, is that in small search tasks 
completed in a few seconds, the revisit rate is about 5%. 
The model results for this task, which could take a much 
longer time, produced a higher revisit rate, about 11-33%, 
mostly due to memory failures.

2. Treat the color feature as widely available if the objects 
are reasonably large and the color is prominent, such as for 
objects 1° or larger with a single color. 

3. Treat other object  properties such as encoded size and 
shape as narrowly available except for very large objects.
Generally, the object must be fixated for these properties to 
be visible.

4. In general, text must be fixated to be recognized. 

5. Fixate adjacent items only if their available visible 
properties have not ruled them out as candidates.  While a 
common observation is that the closest relevant object tends 
to be fixated next, this could simply be due to the shape of 
acuity functions resulting in closer objects being more 
likely to have their visual guidance properties available.

5. Set each fixation time to a constant in the range of 250 to 
300 ms.

An Approximate Algorithm for Predicting Visual Search
These guidelines for predicting visual search can be 
combined into a simple algorithmic model of visual search 
such as the following:

1. Start with a list of all the to-be-searched objects in the 
visual field each marked as unknown color and 
unvisited.

2. Set n, the number of fixations, to zero.
3. Repeat the following:

If a color is specified:
For each object, use the availability function to 

determine whether its color is available. If it is, add 
the color to that object in the list.

If the specified color is available for one or more 
unvisited objects in the list, choose one of those 
objects at random.

If the specified color is not available for an unvisited 
object, choose an object with unknown color at 
random.

If a color is not specified, choose an unvisited object at 
random.

Make the chosen object the current object, make its 
location the current eye location, mark it as visited, 
and increment n. If it is not the target object, repeat 
with the new eye location. If it is, the search is done. 

4. Estimate the proportion of repeat fixations with the 
formula (n * .01 - .03), floored at 0. Add this proportion 
to n, and multiply by 300 ms/fixation to yield the 
approximate search time.

The GLEAN Model
A GOMS model of the Williams task was implemented 
using the GLEAN cognitive modeling system [21]. GLEAN 
is a simulation environment similar to EPIC, but with a 
much simpler cognitive architecture directly inspired by the 
Card, Moran, and Newell [4] Model Human Processor, and 
whose cognitive processor is directly programmed in terms 
of procedural GOMS models using GOMSL, a formalized 
version of the earlier NGOMSL notation. GOMSL includes 
a visual search operator Look_for which takes a list of 
property value pairs (e.g. Color is Red) and examines 
the content of the visual processor's store of visual objects, 
locates the first object that has the specified property-value 
pairs, and stores the name of the object in working memory 
under a supplied tag. This tag can then be used to identify 
the object for later operators, such as pointing a mouse to 
the object. In the GOMS tradition, the time required for the 
Look_for operator is a single Mental operator with a time 
constant of 1.2 or 1.35 s [14].

When expressed in GOMSL, the complete model for the 
Williams task is very simple, as shown in Figure 12. This 
version uses all four properties to identify the target object; 
if fewer properties are specified, the Look_for operator 
would use only the specified properties. For brevity, the 
Acquire Probe method is not shown; it simply examines 
each field of the probe and stores the size, color, shape, and 
label under the corresponding tags. The brevity and 
simplicity of this model compared to the intricacy of the 
EPIC or other full-fledged cognitive architecture models is 
striking. This simplicity is the principal argument for trying 
to develop computational architectures such as GLEAN that 
are based on GOMS [17].

Two GLEAN models were run. The two models were 
identical to each other from the perspective of the analyst 
(the person) using GLEAN—both used the exact same 
GOMSL code shown in Figure 12. The first model used the 
current GLEAN system in which every Look_for operator 
is assigned a constant time of 1.2 s. The second model used 

Define_model: "Williams 67 task"
Starting_goal is Perform Search_task.

Method_for_goal: Perform Search_task
Step 1. Accomplish_goal: Perform Trial.
Step 2. Goto 1.

Method_for_goal: Perform Trial
Step 1. Accomplish_goal: Acquire Probe.
Step 2. Keystroke X.
Step 3. Wait_for_visual_object_whose 
! Event_type is New 
! and_store_under <new_object>.
Step 4. Look_for_object_whose 
! Color is <color>, Encoded_size is <size>,
! Shape is <shape>, Text is <label>
! and_store_under <found_object>.
Step 5. Keystroke X.
Step 6. Return_with_goal_accomplished.

Figure 12. The GOMSL model for the Williams task
when all precue properties are specified. 
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an augmented version of the GLEAN system in which the 
time required for a Look_for operator was determined 
using an implementation of the “approximate algorithm” 
described above, and in which the same acuity function 
described for the EPIC model was used to determine the 
availability of each object's color feature.

GLEAN Model Results
The first model, using the current GLEAN system with a 
constant Look_for operator time, was run for a single 
iteration. (All subsequent runs would have been identical.) 
The model produced a short constant RT of 1.92 s 
regardless of the precue specifications. This RT was 
primarily determined by the Mental operator time 
regardless of the cue specifications, the number of objects, 
or their visual characteristics. The model is seriously 
inaccurate, with an R2 of 0.0 and an overall AAE = 80%.

The second model, using the GLEAN system augmented 
with the enhanced Look_for operator and the color-only 
acuity function, was run for 500 trials on each condition. 
Figure 13 shows the model’s RT predictions. The 
predictions are much less accurate than the EPIC model and 
consist of only two values—a short one for color-guided 
search and a long one for a random search. Because the size 
and shape acuity functions were not used, the model is not 
accurate in these conditions. Despite this oversimplification, 
the R2 over this data is a respectable 0.91; the AAE for the 
color-guided and Number-only search is reasonably good at 
11%, and overall is 26%. Despite the serious over-
prediction for the non-color precues, the predictions are 
much more accurate than when predicting search time using 
the Mental operator.

Low-Fidelity Model Success

Even in this preliminary highly simplified form, the 
augmented version of the Look_for operator would 
produce much more accurate results than the original 
GOMS Mental operator version. Further accuracy could be 
obtained by working with additional data sets, and by 
including the object size and shape in the algorithm using 
representative acuity functions. The best approach to further 
this line of development of practical models for visual 
search would be to develop additional EPIC models for 
visual search tasks of realistic stimuli, harmonize them with 
the model for the Williams task, and update the algorithm 
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Figure 13. Observed and predicted RTs for the augmented 
GLEAN GOMS model.

and its parameters accordingly. To avoid misleading 
appearances of accuracy, the GLEAN implementation 
would need to gracefully and visibly default to the standard 
Mental operator predictions when outside the bounds 
supported by the EPIC models. 

CONCLUSION
This work presents extensions to existing cognitive 
modeling frameworks that permit models to more 
accurately characterize the processes of “active vision” in 
HCI tasks such as by incorporating into the modeling 
frameworks visual acuity functions which account for the 
gradual decrease in feature availability for objects as they 
appear at greater eccentricities from the point of gaze. 
These extensions will make it possible for contemporary 
modeling approaches to predict the benefits of simplified 
icons, such as in Figure 1, that can be distinguished based 
on peripherally-visible features rather than just fine details. 
These extensions can (and we believe should) be 
incorporated into both high fidelity modeling frameworks 
such as ACT-R [7]  and easy-to-use modeling tools such as 
CogTool [27] and Distract-R [25].

This work shows that practical modeling of visually 
intensive tasks can be made more accurate without 
requiring additional effort from the analyst. It also 
demonstrates the benefits of decoupling the human 
invariants such as visual acuity functions from the encoding 
of the procedural skill needed to do a task—the augmented 
GLEAN provided a substantially better fit using the exact 
same encoding of procedural knowledge.

There is great value in the cognitive-architecture approach 
of modeling the human, task, and device each as separate 
entities. This will contribute to modeling frameworks that 
can predict performance across a wide range of existing and 
not-yet-imagined HCI tasks. This may be difficult to 
accomplish with models that characterize overall HCI 
performance simply as combinations of smaller-scale 
empirical relationships as in [5], which does not provide as 
clear a decomposition into the components responsible for 
the task performance. For example, the mediocre fit to some 
of the conditions shown in Figure 13 is easy to explain— 
the architecture simply does not make use of the possible 
extra-foveal availability of size or shape cues. Adding these 
would be straightforward and would improve the fit.

Cognitive modeling is well within reach of most interface 
designers as demonstrated by both unpublished and 
published [2, 3, 12, 13] successes and as supported by 
efforts to make such models not only easy-to-generate [14, 
21, 25] but also increasingly flexible and veridical, such as 
with the work presented here which takes us further along 
the road towards accurate and practical predictive models of 
active-vision-based visual search.
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