
PPS: A Parsimonious Production
System

Arie Covrigaru and David E. Kieras

Technical Report No. 26 (TR-87/ONR-26)

April 22, 1987

This research was supported by the Office of Naval Research, Personnel
and Training Research Programs, under Contract Number
N0001 4-85-K-01 38, Contract Authority Identification Number NR
667-543. Reproduction in whole or part is permitted for. any purpose of
the United States Government.

Approved for Public Release; Distribution Unlimited

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE ._I

7Fo rm A Ppr ove d

REPORT DOCUMENTATION PAGE OMB no. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release:
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-87/ONR-26

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME F MONTQRING ORGANIZATIONofI (if applicable) Cof iceye Science
University of Michigan Iice of Naval Research (Code 1142CS)

____ ___ ___ ___ ___ ____ ___1 _ ___ ___ ___ 800 N. Ouincy Street
6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Technical Communication Program Arlington, VA 22217
Ann Arbor, MI 48109-1109

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) N00014-85-K-0138

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

61153N RR04206 RR04206-OA NR667-543

11. TITLE (include Security Classification) PPS: A Parsimonious Production System

12. PERSONAL AUTHOR(S)
Arie Covrigaru and David Kieras

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Technical I FROM TO April 22, 1987 l 34

16. SUPPLEMENTARY NOTATION
Address correspondence to David E. Kieras

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Cognitive models, production systems, rule-based systems
05 10

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Production systems are commonly used in cognitive modelling research.
However, most production system implementations are difficult to program because
of the syntax complexity of the rules, and the presence of obscure interactions
between rules resulting from system features such as conflict resolution. PPS is
a production system implementation in which simplicity of syntax and explicitness
of control structure have been emphasized. Experience with several modelling
projects suggests that this approach is well suited for cognitive modelling.
This paper describes the production rule syntax, and summarizes the data
structures and algorithms used in the implementation.

20. 1STRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. - DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL I22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Susan Chipman (202) 696-4318 7

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UnclassF ied

Abstract

Production systems are commonly used in cognitive modelling research.
However, most production system implementations are difficult to
program because of the syntax complexity of the rules, and the presence of
obscure interactions between rules resulting from system features such
as conflict resolution. PPS is a production system implementation in
which simplicity of syntax and explicitness of control structure have been
emphasized. Experience with several modelling projects suggests that
this approach is well suited for cognitive modelling. This paper describes
the production rule syntax, and summarizes the data structures and
algorithms used in the implementation.

PPS: A Parsimonious Production System

Ae Covrigaru and David Kieras

Abstract

Production systems are commonly used in cognitive modelling research. However, most produc-

tion system implementations are difficult to program because of the syntax complexity of the rules, and the

presence of obscure interactions between rules resulting from system features such as conflict

resolution. PPS is a production system implementation in which simplicity of syntax and explicitness of

control structure have been emphasized. Experience with several modelling projects suggests that this

approach is well suited for cognitive modelling. This paper describes the production rule syntax, and

summarizes the data structures and algorithms used in the implementation.

1. Introduction

The production system form of cognitive architecture is important not only because it has a long

history in cognitive modelling and artificial intelligence, but also because it is likely to continue to be popu-

lar in the future. Production systems are especially useful in the cognitive modelling domain because they

are well suited for the representation of procedural knowledge, and analyses based on production rule

representations appear to have enough empirical content to be useful in modelling human behavior in

complex tasks (e.g., Anderson, 1983; Kieras & Bovair, 1986; PoIson & Kieras, 1985; Thibadeau, Just, &

Carpenter, 1982).

The major virtue claimed for this architecture is the simplicity and modularity of the knowledge rep-

resentation, along with the potential for parallelism. In practice, however, most production system imple-

mentations are complex and difficult to program in. This seems to be due to the following two reasons:

* The production rule syntax can be complex, and can reflect commitments to specifics of the cognitive

architecture, such as the number and organization of the memory systems. The programming can

become unduly difficult if the programmer wants to implement a set of cognitive assumptions different

from the committed architecture, or wants to work with very simple data structures.

* It can be difficult for the programmer to predict or control when a particular production rule will fire,

since many implementations involve complex "conflict resolution" and "refractory" conventions.

These conventions can simplify the programming at the level of individual rules, but the result is often

that rules interact in ways not obvious from the rules themselves. For example, a rule may not fire if

1

another rule, rating higher in the conflict resolution scheme, also has its conditions met. Alternatively,
if a rule has fired before, it may be refractory (not fire again) unless its conditions are matched in a way
considered "new," which again may not be apparent from the rule itself. These interactions with other
rules, and the past firing history, can completely destroy the desirable modularity of the production
rules to the point where using this architecture has few programming advantages over coding directly
in LISP.

These two factors are obstacles to the wider use of production system models in cognitive mod-
elling research and practical applications. For this reason, we developed a production system imple-
mentation, called Parsimonious Production System (PPS), in which simplicity and explicitness of repre-
sentation and programming was emphasized, at the possible expense of compactness and power. We
also wanted an implementation that was coded directly in LISP for portability reasons, and so were willing
to deemphasize speed and capacity.

From the cognitive modeller's point of view, the key features of PPS are as follows:

e The syntax of the rules is as simple as possible, and in practice, PPS rules are easy for both the pro-
gra...,- and non-P;J.Jrammmm. 'to rLcau anu lnieL-pei.

* There are no learning mechanisms in PPS - it is intended to support the development of static
production systems, rather than ones that change with experience.

* The system's working memory structure is very simple, and allows the programmer to define the mem-
ory storage systems just by usage, rather than having a fixed memory architecture.

* The programmer is encouraged to make the control structure in the cognitive model explicit, rather
than relying on implicit mechanisms in the production rule interpreter. Since any number of rules may
fire at once, and there are no conflict resolution or refractory mechanisms built into the system, the
production rules have to make the desired control structure explicit.

Thus PPS can be viewed as an experiment in simplicity of production rule architecture - can sig-
nificant and useful systems be built within this simple framework?

2. System Overview

2.1. What is PPS ?

PPS is a production system shell. The system consists of two parts: A compiler and an inter-
preter. The input to PPS is a set of statements of the form <IF Condition THEN Action>, called pro-

2

duction rules, and an initial state of the system's working memory. The working memory is a collection of

the clauses of the form (a1 ...an) where ai i,1...n are constants (atoms in Lisp notation). The following

steps are taken by PPS in order to process its input: First, the compiler builds a data flow network that

represents the production rule set, preparing them for the interpreter. Then the interpreter executes the

productions by iteratively finding the subset whose conditions match objects in the system's working

memory and executing the actions of those production rules. Each match-execute iteration is called a

cycle.

2.2. Why a data flow net is used

The bottleneck of production system interpreters is performing the matching of the conditions in

each cycle. Forgy (1979, 1981, 1982) developed an approach in which the conditions are rearranged into

a network in such a way that the matching process considers only the modifications of the state of the sys-

tem from the previous cycle, and not the whole set of conditions. In addition, the structure of the

pattern-matching net enables us to test the parts of the conditions of many production rules at once
(implicit parallelism).

2.3. Summary of system components

This section is a high-level description of the system's components. PPS consists of two mod-

ules: A compiler, which compiles the patterns in the given set of production rules into a data flow net, and

an interpreter, which interprets the production rules using the data flow net.

Compiler: The compiler in PPS takes a set of production rules written in their formal syntax and trans-

forms them into the more efficient form used later in the run time (interpreting) stage of the system. A data

flow network is created that stores the information represented in the conditions of individual production

rules. First a discrimination net is built representing the items in each pattern in the conditions. Then the

compiler builds the combining net which represents the relationships of the patterns in each condition. At

the bottom of the data flow network each production rule condition is represented by a single node.

Interpreter: The interpreter executes a set of production rules that are compiled by the compiler into a

data flow network. The function of the interpreter is to perform the cycles of recognizing the set of pro-

duction rules to be fired and execute their actions. Those cycles are performed until either a specific

Stopinterpreter action is executed (as one of the actions of a production rule) or the set of production

rules to be fired is empty.

A cycle consists of updating the working memory, propagating the changes down the data flow network to

update the list of matching production rules, and finally, executing the actions of these production rules.

In the current implementation of PPS there is no conflict resolution. All the production rules that have

3

matching conditions are fired. Furthermore, a production rule will fire on each cycle as long as its condition
is matched by working memory elements.

The "Working Memory": An element in the working memory is called a clause. A clause is a list (in Lisp
notation) of atoms that represent constant values. The working memory for PPS is not a separate data
structure; rather the working memory is represented by the state of the pattern nodes in the network
which represent the patterns in the rule conditions. Such a node has a status and a set of variable bind-
ings (that can be empty). When a clause is added to the working memory, it matches a pattern, and the
status of the node representing that pattern is set to ON. The list of variable bindings (if the pattern has
variables) is stored with that node.

2.4. Implementation

PPS is implemented on a Xerox 1108 LISP machine in the Interlisp-D environment. Even
though the system takes full advantage of the Interlisp-D environment, the code implementing the algo-
rithms was kept very portable and was actually transported easily to the IBM LISPNM dialect . The inter-
face with the Interlisp-D system is through a collection of menus that appear in a control window. Select-
inn items in these mensi rn'i aa i^.mrn!I'.^n ^, nd!e or -I. v -s ..- - .

facilities are available, such as display of working memory contents, tracing the execution of the rules,
recording a selected subset of the trace, displaying and editing of the rules, and displaying a graphical
representation of the data flow net for a set of production rules.

3. The Production Rules

3.1. Overview

The production rules in PPS are the language in which the user of the system specifies the algo-
rithm to be performed by the PPS interpreter. In order to specify any condition in the production rule lan-
guage, it must be possible to express any well formed formula within the syntax of the conditions. In the
rest of this section we will formally define the syntax and semantics of the conditions and actions in the
production rules.

3.2. Production Rule Set

A set of production rules is an unordered list of rules in the form:

(ProductionRuleName IF (Pattern1 Pattern2...Patternn) THEN (Action1 Action2...Actionm))

4

The list following the IF part is the condition. If the working memory contains clauses that match all

of the patterns in the condition, the rule fires. The part following the THEN is the action list. It consists of

a sequence of actions to be performed by the interpreter if the production rule fires.

3.3. Production Rule Condition

The condition of a production rule is a conjunction of patterns (P1 P2***Pn) where each pattern Pi,

i=1,2...n, has the form: (e1 ...ek). Each element el, 1=1,2,...k is either a constant, a variable designated by

a special prefix (the character"?"), or a wildcard (the string "$$$"). The constant elements in a pattern have

no interpretation except as strings. Each pattern can also appear in negation form as (NOT Pi). A negated

pattern is matched only if there is no clause in working memory that matches the body of the pattern. If a

negated pattern contains a variable, the same variable must appear in a non-negated pattern elsewhere in

the condition, in order to ensure that the variable has a defined binding if the production rule fires. In

addition, the form (NOT P1 P2... Pn) is interpreted as the negation of the conjunction of the patterns

Pl P2...Pn. Any variables appearing in the patterns are treated the same as variables in single negated

patterns.

Any boolean function can be represented with one or more production rules. The AND function

is represented by having two or more patterns in the same condition, the OR function is implicitly repre-

sented by two separate production rules and the NOT function is represented explicitly in the conditions.

3.4. Production Rule Action

The action of a production rule is a list of actions (A1 A2...Am) which are executed in order if the

rule fires. Each Ai, i=1,2 ...m, in the action-list has the form: (fn a1....ak) where fn is one of the known PPS

functions (AddClause, DeleteClause or StopInterpreter), or a user-defined function, and a1 ...ak are its ar-

guments (the arguments can be either constants or variables whose domain is the condition of the pro-

duction rule). Each function is required to return either NIL, a string (in which case the interpreter halts), or

a list of the form ((list of clauses to add) (list of clauses to delete)) which specifies clauses to be

added and removed from working memory.

The action functions are executed sequentially when the production rule is fired. The whole list of

actions in a production is executed for each possible set of bindings of variables for that production. The

order of the action execution within the set of production rules to be fired is: All the deletions from the

working memory in one cycle are performed before the additions so adding and deleting the same ele-

ment in the same cycle will always add an element to working memory.

5

4. The Data flow Net

4.1. Overview

The set of production rules are compiled into a network that is a directed graph, starting with one
root node and ending with rule nodes, where each rule node represents one production rule in the sys-
tem. Conceptually, the data flow net is divided into two parts: a discrimination net and a combining net.

4.1.1. Discrimination net

When a new clause is entered into the working memory or an old clause has to be deleted, it is
necessary to identify the patterns that it matches. This is done by a standard discrimination net mechanism
(Charniak, Riesbeck & McDermott, 1980). The discrimination net starts at the Root-node, contains
item-type nodes which represent the items inside a pattern, and the Pattern-nodes. The following is an
example of the discrimination net mechanism.

Example: For example consider the patterns (?Person ISA boy), (Fred ISA ?Something) and
(?Person ISA ?Something). The discrimination net representing those patterns is shown below. The
ce-Inj f (redl IC A y ::.1' m.ach a:" VI ,aeu paiiefnici. Maicning it against the patterns (?Person ISA boy)
and (?Person ISA ?Something) will only take matching four items. Thus, instead of iterating over all the
clauses in the conditions trying to find the one that matches, the system branches to the small subset of
patterns that have the potential of matching directly, based on one item in the clause.

ARoot

,1ISA CSISA

I boy I ?Something I ?Something A

A Root node

p Patterni (Pattern2 p Pattern3 E[3 Item node

® Pattern node

Figure 1: The clause (Fred ISA boy) is matched item-by-item; Fred matches the
variable ?Person and the constant Fred, ISA matches at the corresponding constant
nodes, and boy matches both the constant boy and the variable ?Something. Thus the
three patterns matching this one clause are determined.

6

4.1.2. Combining net

This part of the net, starting from the nodes representing the patterns, consists of combining

nodes that combine the patterns in each rule's condition, keeping account of the structure of the condi-

tion and the variable bindings. Each condition is eventually combined into one combining node, and that
node points to the rule node, which is a terminal node in the net and represents the corresponding pro-

duction rule. The combining nodes are either And-node or Negation-node type.

Ro Root o

9 should

mON be

; l Nodes Glossary

I Patten2 ()PaUrn3 ^ Root node

4 \ I m Item node

I Patten2 & (- Pauernl) - PatternI & Pattern3 Pattern node

+ Pi& P2 M Negation node

Rule node

Figure 2: The negation node combines Pattern2 and the negation of Patternl into a
conjunction that forms the condition of production rule P1; likewise the and node conjoins
Patternl and Pattern3 to form the condition of production rule P2.

Example: Consider the following two production rules:

(P1 IF ((NOT(?switch is on))

(?switch should be on))

THEN ((Turn ?switch on)

(AddToWorkingMemory ?switch is on)))

(P2 IF ((?swtch is on)

(?switch should be off))

THEN ((Turn ?switch off)

(DeleteFromWorkingMemory ?switch is on))

7

These productions will be compiled into the net in Figure 2. Initially the status of all the nodes is
OFF. The labels of the nodes in the discrimination net are the value attributes of each node and the labels
in the combining net are the names of the nodes and what they represent in the net

4.2. Node Types, their attributes and their functionality

In this section we will describe the various nodes in the data flow net. This includes their at-
tributes, function, and what they represent according to the original production rules. Besides the spe-
cific attributes to each type of node, all the nodes in the net have the type attribute and all the
non-terminal nodes have a list of their successors. Those properties do not appear in the individual node
descriptions. The description goes from the top of the net (root node) to the terminal nodes (rule nodes).

4.2.1. Special Nodes

Root-node: This is the root of the net and the only entry point to the net.

AlwaysTrue-node: This node is created in every network specifically for the cases where the condition
of a production rule contains only patterns in negation form. The (AlwaysTrue) pattern represented by
tha Always'Tr ruElmod is always in ihe working memory so a negated node will be paired with it and
combined into a negation node in the system.

4.2.2. Intra Pattern nodes

The following are the nodes that represent elements in the patterns, and appears only in the dis-
crimination net.

Constant-node: This is a node representing an constant item in a pattern. A constant is any item that is
not a variable or a wildcard. The attribute of this type of node are the value which is the constant the
node represents.

Variable-node: This node represents a variable in a pattern. A variable in PPS notation is any string in a
pattern that starts with the prefix "?". Its attributes are the value and the name of the variable it repre-
sents.

Wildcard-node: This node is used in the net to enable the PPS user to have items in patterns that
have the function of matching any item in a clause that is in that position without keeping track of its
value. A wildcard in PPS notation is the string "$$$".

Pattern-node: The pattern node type is used to represent the individual patterns in the conditions in
production rule set. This node has the attributes consisting of the pattern in its original form (a de-

8

bugging aid), the list of variable names in the pattern (used by the interpreter for binding), a flag stating

if the pattern contains any wildcards, and a status attribute. This last attribute is ON if there is any

clause that entered in the working memory that matched this pattern and OFF otherwise. Initially, the

status of all pattern nodes is OFF.

4.2.3. Combining nodes

In order to understand the function of the combining nodes described below we need to define

binding sets. A binding set is a list of the form (varname1 value1 varname2 value2...varnamek valuek)

where each value1 is the binding of the variable with the name varname1. Each clause entered into the net

that matches a pattern with variables will create a set of bindings for that pattern where each variable in the

pattern is bound to the corresponding item in the clause.

And node: An and-node has exactly two predecessors which can be any combination of and-nodes,

negation-nodes, or pattern-nodes. It represents a combining function analogous to a logical AND of

the two predecessors. The attributes of an and-node are the left and right predecessors, the status,

the set union and the set intersection of the lists of names of variables from both predecessors and

the list of consistent bindings (described below).

If no variables are involved (the predecessors do not have variables) the and node will have its

status ON only when both predecessors have their status ON. If either of the predecessors has variables,

then the node will be ON only if both predecessors are ON and there are bindings of variables from the
predecessors that are consistent, meaning that variables that appear for both predecessors have the

same bindings.

For example the binding set (?x frog ?y green) is consistent with the binding set

(?x frog ?z jumps) because the variable ?x that appears in both sets has the same binding. These

binding-sets will be combined into the set (?x frog ?y green ?z jumps). On the other hand the set

(?x frog ?y green) is not consistent with the set (?x watermelon ?z green) because the common

variable ?x is bound to frog in the first set and to watermelon in the second.

Negation node: This type of node represents a combining function analogous to the logical expres-

sion (A & -B) where A and B are the two predecessors. The positive predecessor A, can be any

combining node or pattern node and the negative predecessor B, must be a pattern node. The

negation nodes are needed when there is a negated pattern in a condition. This node has the at-

tributes of status, the union of variable names and their intersection from its predecessors, and a list of

variable bindings.

9

If no variables are involved (in the negated predecessor pattern) the negation node will have its status
ON only when no clause matching this pattern is in the working memory, and the positive predecessor
is ON. If the pattern has variables, then the node will be ON only if there are bindings of variables on
the positive node that are not consistent with those of the negated pattern's bindings. Thus the
negation node takes the positive predecessors binding sets, and removes any binding sets that are
consistent with the negative predecessors binding sets and passes this smaller set of bindings down.

To illustrate the function of the negation node, suppose the positive predecessor has the binding
sets (?animal bear ?color black) and (?animal bear ?color white) and the negative predecessor
has the binding set (?animal bear ?color black ?description furry). The binding set
(?animal bear ?color black) is consistent with (?animal bear ?color black ?description furry) and
so will not be passed down, but the binding set (?animal bear ?color white) will be passed down the
net because ?color has different bindings in the positive and negative predecessors.

4.2.4. Terminal Node

Rule-node: This is the terminal node in the network. Its function is to keep track of the information
needed to fire a prodution nelA Its attrihutres r fe u O u .uIs------------

-_ _. ---. -- - % ~ l C1i I lul ly Li IC be

be fired, OFF otherwise), its predecessor, the actions to be performed when the production rule is
fired and the list of all of the binding sets passed down from the combining nodes. On firing, the ac-
tions are executed once for each set of bindings.

5. The Compiler

The compiler first builds a discrimination net of the different patterns in the conditions, and then
constructs a combining net that combines the patterns to represent the condition of each production rule
terminating with a single combining node that is a unique predecessor of a rule node.

Note that in PPS, the order in which rules appear in the list of productions, or the order of the pat-
terns in conditions, does not determine which rules will fire, nor the order in which they fire. However, in
constructing the combining net, the compiler uses a fast heuristic that takes advantage of the fact that the
cognitive model programmer will tend to write the production rules in a certain order for reasons of legibility
and clarity. Rules that have condition patterns that appear in many other rules, such as statements of
general goals, tend to appear earlier in the list of rules than ones that have condition patterns such as
specific goals that appear only in a few, or individual, rules. Likewise, within a rule, more general
(frequently occurring) patterns tend to appear first in the rule condition, with more specific tests appearing
later. PPS does not require rules to have this ordering property, but it is a natural way to write the rules in a
cognitive model.

10

The compiler can exploit this ordering property in constructing the combining net by simply col-

lecting pairs of patterns in the order that they appear in the rules. The resulting network may not be the

optimal one, either in size or run-time speed, but the compilation time with this approach is considerably
better than that of an optimizing compiler algorithm we have experimented with, and the run time appears

to be close to what an optimizing compiler would produce. Since in a cognitive modelling domain there

are many revisions to the model, but only a few "production runs," this tradeoff is the appropriate one.

The following sections summarize the algorithms used by the compiler in the discrimination net

construction and the combining phase. For a more detailed description of the compilation algorithms see
Appendix A.

5.1. Discrimination Net Phase

This is the procedure of compiling the patterns into a discrimination network to create one node to
represent each distinct pattern in a production rule set. Each pattern in the conditions is then replaced by
the name of its representative node in the net.

The discrimination algorithm works as follows: It picks up a pattern and, starting at the root node

and with the first item in the pattern, it looks for the node representing that item among the immediate

successors. If the node is found, the process is repeated with the second item in the pattern and the

successors of the representing node. As long as the nodes are found in the net, nothing new is created.
If an item has no representing node among the immediate successors, a new node is created to represent

the new item and added to the set of successors of the last node. When the compiler exhausts all the
items in the pattern it looks for a pattern node among the successors of the last node. If one is found it

means that the pattern was encountered in a previous production rule, otherwise a new pattern node is

created and added to the set of successors of the node representing the last item. In either case the pat-

tern node (found or newly created) replaces the original pattern in the rule condition. The discrimination

procedure is repeated for each pattern in the condition and for each condition in the set of production

rules.

Patterns in negation form are treated the same way by the discrimination procedure, but the pat-

tern in the condition is replaced with the name of the pattern node prefixed by the character "-" signifying

the fact that the pattern is in negation form. This prefix will be noticed later by the combining net building

procedure and used to create negation nodes.

As an example consider the following production rule:

(P1 IF ((?switch is off)

(?switch should be on))

11

THEN ((Turn ?switch on)

(DeleteFromWorkingMemory ?switch off)

(AddToWorkingMemory ?switch is on)))

Suppose the patterns are represented by the nodes patteml and pattern2 (see Figure 2); after the dis-
crimination process it will look like this:

(P1 IF (patterni

pattem2)

THEN ((Tum ?switch on)

(DeleteFromWorkingMemory ?switch off)

(AddToWorkingMemory ?switch is on)))

5.2. Combining Phase

The second phase in the compilation procedure is to combine the patterns in each condition such
that one combining node will represent the condition of each production rule. In general, the compiler
builds a net starting from the pattern nodes down to rule nodes. In the course of generating this net, it re-
places pairs of nodes in the conditions with combining nodes until each condition consists of only one
node. Finally the compiler creates a rule node in the net that holds the information about the action of the
production rule and its variable binding sets.

At the beginning of this phase, the conditions are represented as a list of pattern node names.
The compilation of a condition is as follows: As long as the condition consists of more than one node
name do: Pick the first pair of nodes and determine if they can be combined by either an and node or a
negation node. If not, move one of them to the end of the condition and pair the other with the next node
name in the condition; If so, search the intersection of those node's successor lists to determine if the
combining node was created in a previous compiled condition. If such a node is found, replace the pair in
the condition with the name of the combining node and repeat the procedure on the next pair. If a com-
bining node does not exist, create one and replace the pair in the condition with its name. When the con-
dition consists of only one node name, create the terminal rule node, and go on to the next condition.

6. The Interpreter

The interpreter runs in a cycle of matching the conditions and executing the actions of the pro-
duction rules whose conditions match. This cycle is repeated until either there are no productions that

12

match, or one of the actions stops the system deliberately. In order to give a clear description of the

matching algorithm, it is useful to define the 'state of the system".

6.1. The "State of the System"

Each cycle of the interpreter can be looked at as a time pulse such that t1 will be the beginning of

the first cycle, t2 the second and so on.

At time tj the state of the system is as follows:

o Database1 : The contents of the database consist of the set of pairs (status, binding sets) of all of the

pattern, combining, and rule nodes in the data flow net.

* WorkingMemory1: A subset of Databasei which is all the pairs (status, binding sets) of pattern nodes

only.

* FiredListi: The list of production rules whose conditions match the current contents of the working

memory.

* AddListi: The list of clauses to be added to working memory.

DeleteListj: The list of clauses to deleted from working memory.

Each of the components of the state of the system can be empty at any time, but if FiredList is

empty, the interpreter will stop cycling.

6.2. The Matching Algorithm

This section is a summary of the matching algorithm. A more detailed description of the

procedures used in the interpreter appears in Appendix B.

The matching process is executed in two conceptually different phases. Phase one is discrimi-

nating a clause in the working memory by updating the pattern nodes, and phase two is propagating the

changes into the combining net to update the whole database. The second phase results in the updated

state of FiredList. In the current implementation it was decided to make the updating changes depth first

for each clause in DeleteList and AddList . This approach saves bookkeeping during the propagation of

changes and is more straightforward conceptually.

Thus, for each clause in DeleteListj and AddListj the interpreter does the following: First it dis-

criminates the clause, finding all the pattern nodes that match the clause. Each pattern node is updated to

show whether the clause was added or deleted, and changes to the bindings sets if variables are in-

13

volved. For each of those nodes the interpreter calculates whether the state of the node has changed,
and if so, the changes are propagated to the successors. The update-propagate procedure is repeated
for each successor. This depth-first update-propagate process is stopped either when the changes do
not change the state of a node, or a rule-node is reached. If the new status of the rule node is ON, the
rule is added to FiredList, otherwise the rule is removed from FiredList.

When each clause in DeleteListi and AddListi has been processed, the changes in the net results
in Databasei+1 and FiredListkl. Next the actions in the production rules in FiredListj+j are executed, re-
sulting in DeleteListj+1 and AddListkl. Then cycle i+1 starts.

6.3. An Example

This example will illustrate how the matching algorithm is superior to a simple production system
interpreter in terms of the steps needed to match a simple production rule condition that has two patterns
and two variables. The example will be displayed for both, a simple interpreter and the PPS interpreter.
For more detailed discussion see Forgy (1982).

Suppose we have the following production in the system:

(P1 IF ((?switch is ON)

(?switch is connected to ?light)

(NOT (?light blinks)))

THEN ((Tum?switchON)

(AddToWorkingMemory ?light blinks)))

and the working memory consists of the following items:

(S1 is ON) (S1 is connected to L56)
(S2 is connected to L3) (S3 is ON)

(S3 is connected to Li) (S4 is ON)

A simple interpreter, in order to find out if P1's condition matches the facts in the working memory,
would have to find and mark all the clauses that match the first pattern, which is one scan of the working
memory, then for each marked clause, find all the clauses that match the second pattern and are consis-
tent with the first. In this example, three more passes over the working memory would be required. If
there are more than two patterns the process would grow exponentially. Furthermore, the whole process
will be repeated every cycle and for every rule, even if the changes in the working memory are unrelated to
the nule.

14

The same example is treated by the PPS interpreter in a completely different way. First, P1 is
compiled into a net as shown in Figure 3. Since the PPS matching algorithm is concerned only with
changes in the state of the system, suppose P1 is not in FiredList and all the clauses shown above as
facts in working memory are in AddList at this moment.

Name: patternl Name: pattenZ Namer pattern3
TpYP P- 110" Tper n-no Type: p-nole
Statner ON StaauL ON Sty: OFF
Represents: (?switch is ON) Represents: (?switch is connected to Wight) Representw (?light bliks)
Bindingsets: ((?switch SI) Bialinpete ((?switch SI ?ligh L3) Bindipetr NIL

(?switrh S3) (7switch S3 nlight LI)
(?switch S4)) (?switch S4 night L56))

4Name: aml-,del
Type: anode
Stah- ON
Binldingets: ((?switch Sl night L3)

(?ewitdl S3 ?ligpt LI))

\ Type negabin-node
Staym ON Nodes ale
Bindingsete ((7ewitch SI ?mlai L3)

(?switch S3 ?Iight LI)) Root node

El Item node

O Pastem node
Name: PI

R Tpe: rule-node EE Adnd

Statuse ON
Bindingsets ((?awitch SI 1i NegaDOn node

(?switch S3 ?light LI)) Role node

Figure 3: The part of the data flow net for P1 including only the nodes from the patterns
down to the rule.

The first step is to update the working memory which takes a time proportional to the number of
the different patterns that each clause matches (in this case, just the number of the clauses). Second, the
changes are propagated down the net. Updating and-nodel consists of computing the consistent
binding sets that were added, which will take matching nine values. Then, one more step is done to set
the status of P1 and its bindings. As long as none of the patterns are changed, P1 will be fired each cycle
without recomputing its binding sets. This state is shown in Figure 3. If in the next cycle the clauses
(Li blinks) and (L3 blinks) will be added to the working memory, it will change the state of the pattern
node pattern3 creating the binding sets (?light LI) and (?light L3) and thus changing the node's status
to ON. This fact will require updating the successor of pattern3, in this case removing from the binding
sets of neg-nodel all the sets that contain the bindings of ?light to Li and L3. This will leave neg-nodel
with no bindings and will change its status to OFF. Propagating this change again to the successor will
turn the status of the rule node P1 to OFF, removing it from FiredList.

15

7. Conclusions

The PPS package has been used over the last few years to construct several fairly complex mod-
els of routine cognitive skill in human-computer interaction (e.g. Poison & Kieras, 1985; Bovair, Kieras, &
Poison, in preparation), and a set of models concerning problem-solving with a mental model for a piece
of equipment (Kieras, in press; in preparation), and a few other smaller projects. The flexibility of PPS with
regard to memory organization, the simple rule syntax, and the explicit representation of the control struc-
ture was critical to the easy construction and empirical value of these models. The fact that PPS can be
used routinely to easily construct cognitive models shows that the package meets its intended goals fairly
well.

However, it seems clear that some of the simplicities of PPS are likely to present serious problems
if an attempt is made to extend it to learning situations; for example, learning mechanisms such as
Anderson's (1983) are based on the presence of conflict resolution rules that enable newly acquired pro-
duction rules to eventually dominate previously learned rules. The PPS architecture would have to be
changed to implement such learning mechanisms.

16

Appendix A: Compiler Functions

The following sections describe the algorithms to compile a set of rules. In the compilation pro-
cess as well as in the matching process, only the conditions of production rules are relevant; the actions
and their format plays no role.

Before starting the compilation, the compiler scans the given set of production rules, checking for
syntax errors, variable bindings (variables must appear in at least one pattern in positive form in the condi-

tion of a production rule), and also translates conditions with negations of conjoined patterns into condi-
tions with simple negations that the compiler understands.

Representing negation of conjunctions is done by replacing the single production nule with sev-
eral production rules that are logically equivalent to the original rule based on the equivalence of
(NOT (A & B & B)) to ((NOT A) v (NOT B) v (NOT C)). In PPS the logical OR is implicit in that two
or more production rules are interpreted as a disjunction; in the above example, we can replace one pro-
duction with three others, each having the condition of one of the disjunctives in the equivalent formula,
all with the same action list as the original. This is done transparently to the user.

Discrimination Net Construction

The discrimination procedure is performed by iterating over the list of rules and replacing each
pattern in the conditions with the corresponding node name as the net is created. The following algorithm
describes the function Discriminate-Pattern that is applied to each pattern in the conditions. In this
algorithm we assume the definitions the predicates:

(Matchitem item node) - Matches item against node. If node has the same type as item and the value
of node is item it returns node, otherwise, NIL.

(CreateDiscriminationNode item) - Takes item, an element of a pattern, and creates a node in the
net, returning the name of the new created node.

(CreatePatternNode node) - Takes node, the last element of a pattern, and creates a node in the net
of type pattern-node, returning the name of the new created node.

Procedure: Discriminate-Pattern

Input: Root-node, Pattern
Output: Name of pattern node

17

{Begin Discriminate-Patteml

1. Set current-node to be the Root-node and successors to be the list of
successors of current-node.

2. If there are no more items in the pattern, go to 4; otherwise, set current-item to be
the first item in the pattern and remove it from the pattern.

2.1 . Set type to be the type of current-item (constant, variable or wildcard). If
the type of current-item is variable, add it to the variable-list. If the type is
wildcard, set wildcard flag to T.

3. For each successor apply Matchitem to current-item and the successor. If
current-item matches any successor, set that successor to be current-node and
go to 2. Otherwise apply CreateDiscriminationNode to create a new node to
represent current-item, add that node to the successors of current-node. Set
current-node to be this new node and go to 2.

4. If among the successors there exists a node of type pattern-node, exit
returning that node, otherwise call CreatePatternNode to create a new
node of type pattern-node to represent the pattern, put the variable list

and the wildcard flag on the node, add it to the successors of current node
and exit returning the new node.'

(End Discriminate-Patternm

Pattern Combining Net Construction

The combining net construction is performed by iterating over the condition of a rule and replac-
ing each pair of patterns in the conditions with a combining node name as the net is created. The follow-
ing algorithm describes the function Compile-condition. In this algorithm we make use of the
predicates:

(NonsenseCombination nodea node2) - Tests if two given nodes can be validly combined by an
and or negation node. The rules for invalid combination of two nodes are:

1) Both nodes are patterns in negation form.

2) node2 is a pattern in negation form, both nodes have variables but the intersection of the sets of
variables is empty.

3) node2is a pattern in negation form, with variables, but node 1 does not have variables.
4) node I is a pattern in negation form, both nodes have variables, but the intersection of the sets of

variables is empty.

5) node 1 is a pattern in negation form with variables, but node2 does not have variables.

18

(DetermineNodeType node1 node2) - Determines the type of a combining node for two given
nodes. If either node is a pattern in negation form, the combining node will be a negation node; oth-
erwise it will be an and node.

(FindCombiningNode node1 node2) - Determines if the two given nodes have a combining node
among their successors. If such a node is found, its name is returned; otherwise NIL is returned.

Procedure: Compile-Condition

Input: Root-node, Condition

Output: Name of rule node

{Begin Compile-Condition}

1. Set left-of-pairto be the first element (node) of the condition and remove it from
the condition.

2. If condition is empty go to 7; otherwise, set right-of-pairto be the first element and

remove it from the condition.

3. Apply NonsenseCombination to the pair. If a combination of the two nodes is
invalid by the rules above, add left-of-pair to the end of the condition, and go to 1;

otherwise go to 4.

4. Determine the type of combining node of the pair by applying

DetermineNodeType to left-of-pair and right-of-pair. Apply

FindCombiningNode to left-of-pair and right-of-pair. If a combining node ex-

ists, go to 6; otherwise go to 5.

5. Create a new combining node for the pair and add it to the list of successors of

left-of-pair and right-of-pair.

6. Add the combining node name to the condition. Go to 1.
7. At this point, left-of-pair represents all the patterns in the current condition. Create

a new rule node as successor to left-of-pair, and exit returning the name of the rule

node.

(End Compile-Condition}

19

Appendix B: Interpreter Functions

This algorithm is performed until the interpreter is stopped by an empty set of production rules to
be fired or deliberately by the actions. The algorithm to execute one cycle is as follows:

{Begin Interpreter-Cyclel

1 . For each clause in DeleteList do
Update-FiredList (DeleteList,root-node, list-of-rules-to-be-fired)

2. For each clause in AddList do
Update-Fired List (AddList, root-node, list-of-rules-to-be-fired)

3. For each production-rule in list-of-rules-to-be-fired do
Execute-Actions (production-rule)

4. If list-of-rules-to-be-fired is empty, stop otherwise go to 1.
(End Interpreter-Cycle)

Update Fired List

This is the matching algorithm of PPS. The procedure performed with the AddList is the same as
the procedure with DeleteList so the reader should assume that Update-FiredList is called twice each cy-
cle, first with DeleteList and then again with AddList. The algorithms of the procedures
Discriminate-Clause, UpdatePatternNode and Propagate-Changes used here are described
in detail later.

Procedure: Update-FiredList
Input: list-of-clauses, root-node, list-of-rules-to-be-fired
Output: list-of-rules-to-be-fired

(Begiri Update-FiredListi

1. Set current-clause to be the first clause in list-of-clauses and remove it from
list-of-clauses.

2. Set set-of-matching-pattern-nodes to be the set of patterns returned from ap-
plying Discriminate-Clause to current-clause.

3. Set current-node to be the first node in set-of-matching-pattern-nodes and re-
move it from set-of-matching-pattern-nodes.

4. Apply UpdatePatternNode to current-node.
5. Apply Propagate-Changes to all the successors of current-node that were

changed.

20

6. If set-of-matching-pattern-nodes is empty go to 7; otherwise go to 3.
7. If list-of-clauses is empty go to 8; otherwise go to 1.
8. Return the updated list-of-rules-to-be-fired.
{End U1date-FiredListi

Update Working Memory

The following is the algorithm for updating the working memory. This algorithm makes use of the
predicate:

(ItemMatchesNode ItemNode) - Determines if item matches node, considering type and value. If
node is of type constant, item matches if t is identical to the value of node. If node is of type variable,
item matches and the binding (variable-name item) is recorded. If the type of the node is wildcard,
item always matches.

Procedure: Discriminate-Clause

input: root-node, current-clause (clause to be added or deleted),
action (add or delete)

Output: Set of pattern-nodes

1Begin Discriminate-Clausel

1. Set current-node to be the root-node.

2. Set current-item to be the first item of current-clause and remove It from
current-clause.

3. Set set-of-matching-nodes to be all the successors of current-node that
current-item matches by applying ItemMatchesNode to current-item and each
successor.

4. Set successors to be the union of all the successors of set-of-matching-nodes.
5. If current-clause is not empty go to 2 otherwise got to 6.
6. Set set-of-matching-nodes to be all the successors of type pattern-node. Mark

all the changes (add or delete and bindings) on the record of changes of each
pattern-node. Return set-of-matching-nodes.

{End Discriminate-Clausel

21

Propagate Changes

The changes are kept on each node's change record which has three fields: status change,

binding sets addition and binding sets deletions. The process of propagating the changes is done

depth-first for each pattern node that was marked as changed by the Discriminate-Clause procedure ap-

plied to a clause in DeleteList or AddList.

(UpdatePatternNode Node) - Updates the state of a pattern node. This function is called when a

change to the state of this node was recorded by Discriminate-Clause. The state of the node is de-

termined according to the changes passed down by updating the predecessor, and the changes in

the state of the current node are passed to its successors. The function returns the changes made in

the state of the current node.

(UpdateAndNode Node) - Updates the state of an and node. The changes are marked as addition or

deletion passed down from one of the predecessors. Those can be addition or deletion of bindings

or change in the status of the node if it doesn't consist variables. The change in the predecessor's

state is calculated in combination with the other predecessor and if different then the current state of

the node the state of the node is updated and the change is passed to its successors, otherwise the

function returns NIL and the propagation is stopped on this path.

(UpdateNegationNode Node) - Updates the state of an negation node. The changes are marked as

addition or deletion passed down from one of the predecessors. Those can be addition or deletion of

bindings or change in the status of the node if it doesn't consist variables. This node's changes can

be more complicated then an the changes in an and node since adding bindings to the negated pre-

decessor will cause removing bindings from this node's output which means removing bindings from

the successors. The change in the predecessor's state is calculated in combination with the other

predecessor and if different then the current state of the node the state of the node is updated and

the change is passed to its successors, otherwise the function returns NIL and the propagation is

stopped on this path.

(UpdateRuleNode Node) - This function is called to modify the state of a rule-node. It adds or deletes

the name of the production rule from the list of rules to be fired according to the state of the prede-

cessor to this node. The predecessor represents this production rule's condition. The function re-

turns the name of the node as its result.

22

Procedure: Propagate-Changes

Input: Current-node, List-of-rules-to-be-fired

Output: List-of-rules-to-be-fired

(Begin Progaaate-Changesl

1. Set node-type to be the type of current-node (pattem-node, and-node,
negation-node or rule-node).

1.1. If node-type is pattem-node set changes to be the value returned from
UpdatePatternNode. Go to 2.

1.2. If node-type is and-node set changes to be the value returned from
UpdateAndNode. Go to 2.

1.3. If node-type is negation-node set changes to be the value returned from
UpdateNegationNode. Go to 2.

1.4. If node-type is rule-node set changes to be the value returned from
UpdateRuleNode. Go to 2.

2. If the state of current-node was changed (changes is not empty) set

bA he the of all, -th -succ - CuFicis-hod8. lAp-
ply Propagate-Changes to each of the nodes in set-of-nodes-to-update and
return current-node; otherwise stop and return NIL.

{End Propagate-Chanpesl

23

References

1. Anderson, John R. (1983). The Architecture of Cognition. Cambridge, Massachusetts: Harvard
University Press.

2. Bovair, S., Kieras, D. E., and Poison, P. G. (in preparation). The acquisition and performance of
=-editing skill: A production-system analysis. University of Michigan, Ann Arbor.

3. Brownston, L., & Farrell, R., & Kant, E,, & Martin, N. (1986). Programming Expert Systems in OPS5.
U.S.A.: Addison Wesley.

4. Charniak, E., & Riesbeck, C. K. & McDermott, D. V. (1980). Artificial Intelligence Programming.
USA: Lawrence Erlbaum Associates.

5. Forgy, Charles L. (February 1979). On the Efficient Implementation of Production Systems.
Doctoral dissertation, Carnegie-Mellon University, Pittsburg, PA, U.S.A.

6. Forgy, Charles L. (July, 1979). OPS4 User's Manual. (Technical Report CMU-CS-79-132).
Carnegie-Mellon University: Department of Computer Science, Carnegie-Mellon University.

7. Forgy, Charles L. (July 1981). OPS5 User's Manual. (Technical Report CMU-CS-81-135).
Department of Computer Science, Carnegie-Mellon University.

8. Forgy, Charles L. (September 1982). Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Matching Problem. Artificial Intelligence. .2(1), pp. 17-37.

9. Kieras, D. E. (in preparation). Comparison of a oroduction-rule model with engineering models in a
device operation task. University of Michigan, Ann Arbor.

10. Kieras, D. E. (in press). The role of cognitive simulation models in the development of advanced
training and testing systems. In Frederiksen, N., Glaser, R., Lesgold, A, and Shafto, M. (Eds.),
Diagnostic Monitoring of Skill and Knowledge Acquisition. Hillsdale, N.J.: Erlbaum.

1 1. Kieras, D. E., & Bovair, S. (1986) The acquisition of procedures from text: A production-system
analysis of transfer of training. Journal of Memory and Lanauage, 2X pp. 507-524.

1 2. Kieras, D. E., & Poison, P. G. (1985). Final Regort on SUR Project. User Complexity of Devices and
Systems.

13. Poison, P. G., & Kieras, D. E. (1985). A quantitative model of the learning and performance of text
editing knowledge. CHI'85 Conference Proceedin=s, (pp. 207-212).

1 4. Thibadeau, R., Just, M. A., & Carpenter, P. A. (1982). A model of the time course and content of
reading. Cognitive Science, f6, pp. 157-203.

24

Dr. Eva L. Baker Dr. R. Darrell Bock Dr. Bruce Buchanan
1987/02/03 Distribution List UCLA Center for the Study University of Chicago Computer Science Department[Michigan/Kieras] NR 667-547 of Evaluation NORC Stanford University

145 Moore Hall 6030 South Ellis Stanford, CA 94305
University of California Chicago, IL 60637

Dr. Beth Adelson Los Angeles, CA 90024 Mr. Donald C. BurgyDepartment of Computer Science Dr. Deborah A. Boehm-Davis General Physics Corp.Tufts University Dr. James D. Baker Department of Psychology 10650 Hickory Ridge Rd.Medford, MA 02155 Director of Automation George Mason University Columbia, MD 21044
Allen Corporation of America 4400 University Drive

AFOSR, 401 Wythe Street Fairfax, VA 22030 Maj. Hugh Burns
Life Sciences Directorate Alexandria, VA 22314 AFHRL/IDEBolling Air Force Base Dr. Sue Bogner Lowry AFB, CO 80230-5000

Washington, DC 20332 Dr. Meryl S. Baker Army Research Institute
Navy Personnel R&D Center ATTN: PERI-SF Dr. Patricia A. ButlerDr. Robert Ahlers San Diego, CA 92152-6800 5001 Eisenhower Avenue OERICode N711 Alexandrai, VA 22333-5600 555 New Jersey Ave., NWHuman Factors Laboratory Dr. James Ballas Washington, DC 20208Naval Training Systems Center Georgetown University Dr. Gordon H. Bower

Orlando, FL 32813 Department of Psychology Department of Psychology Joanne Capper
Washington, DC 20057 Stanford University Center for Research intoDr. Ed Aiken Stanford, CA 94306 Practice

Navy Personnel R&D Center Dr. Harold Bamford 1718 Connecticut Ave., N.W.San Diego, CA 92152-6800 National Science Foundation Dr. Richard Braby Washington, DC 20009
1800 G Street, N.W. NTSC Code 10

Dr. John Allen Washington, DC 20550 Orlando, FL 32751 Dr. Pat CarpenterDepartment of Psychology Carnegie-Mellon University
George Mason University prof. dott. Bruno G. Bara Dr. Robert Breaux Department of Psychology4400 University Drive Unita di ricerca di Code N-095R Pittsburgh, PA 15213Fairfax, VA .22030 intelligenza artificiale Naval Training Systems Center

Universita di Milano Orlando, FL 32813 Dr. John M. CarrollDr. William E. Alley 20122 Milano - via F. Sforza 23 IBM Watson Research CenterAFHRL/MOT ITALY Commanding Officer User Interface InstituteBrooks AFB, TX 78235 CAPT Lorin W. Brown P.O. Box 218
Dr. Isaac Bejar NROTC Unit Yorktown Heights, NY 10598Dr. John R. Anderson Educational Testing Service Illinois Institute of

Department of Psychology Princeton, NJ 08450 Technology Dr. Robert CarrollCarnegie-Mellon University 3300 S. Federal Street OP 01B7
Pittsburgh, PA 15213 Leo Beltracchi Chicago, IL 60616-3793 Washington, DC 20370

United States Nuclear
Technical Director, ARI Regulatory Commission Dr. John S. Brown LCDR Robert Carter5001 Eisenhower Avenue Washington DC 20555 XEROX Palo Alto Research Office of the ChiefAlexandria, VA 22333 Center of Naval Operations

Dr. John Black 3333 Coyote Road OP-OlB
Dr. Patricia Baggett Teachers College Palo Alto, CA 94304 Pentagon
University of Colorado Columbia University Washington, DC 20350-2000
Department of Psychology 525 West 121st Street Dr. John Bruer
Box 345 New York, NY 10027 The James S. McDonnell
Boulder, CO 80309 Foundation

Dr. Arthur S. Blaiwes Univ. Club Tower, Suite 1610
Code N711 1034 South Brentwood Blvd.
Naval Training Systems Center St. Louis, MO 63117
Orlando, FL 32813

Dr. Stephanie Doan Dr. Pat Federico
Dr. Fred Chang LT Judy Crookshanks Code 6021 Code 511
Strategic Technology Division Chief of Naval Operations Naval Air Development Center NPRDC
Pacific Bell OP-112G5 Warminster, PA 18974-5000 San Diego, CA 92152-6800
2600 Camino Ramon Washington, DC 20370-2000
Rm. 3S-453 Dr. Emanuel Donchin Dr. Paul Feltovich
San Ramon, CA 94583 Phil Cunniff University of Illinois Southern Illinois University

Commanding Officer, Code 7522 Department of Psychology School of Medicine
Dr. Davida Charney Naval Undersea Warfare Champaign, IL 61820 Medical Education Department
English Department Engineering P.O. Box 3926
Penn State University Keyport, WA 98345 Defense Technical Springfield, IL 62708
University Park, PA 16802 Information Center

CAPT P. Michael Curran Cameron Station, Bldg 5 Mr. Wallace Feurzeig
Dr. Eugene Charniak Office of the CNO Alexandria, VA 22314 Educational Technology
Brown University Director, Naval Medicine Attn: TC Bolt Beranek & Newman
Computer Science Department Pentagon, Room 4D471, OP-939 (12 Copies) 10 Moulton St.
Providence, RI 02912 Washington, DC 20350-2000 Cambridge, MA 02238

Dr. Jean-Pierre Dupuy
Dr. L. J. Chmura Dr. Cary Czichon Ecole Polytechnique Dr. Craig I. Fields
Computer Science and Systems Intelligent Instructional Crea 1 Rue Descartes ARPA
Code: 7590 Systems Paris, FRANCE 75005 1400 Wilson Blvd.
Information Technology Division Texas Instruments AI Lab Arlington, VA 22209
Naval Research Laboratory P.O. Box 660245 Mr. Ralph Dusek
Washington, DC 20375 Dallas, TX 75266 ARD Corporation Dr. Gerhard Fischer

5457 Twins Knolls Road University of Colorado
Dr. Yee-Yeen Chu Brian Dallman Suite 400 Department of Computer Science
Perceptronics, Inc. 3400 TTW/TTGXS Columbia, MD 21045 Boulder, CO 80309
21111 Erwin Street Lowry AFB, CO 80230-5000
Woodland Hills, CA 91367-3713 Edward E. Eddowes J. D. Fletcher

Dr. Natalie Dehn CNATRA N301 9931 Corsica Street
Dr. William Clancey Department of Computer and Naval Air Station Vienna VA 22180
Stanford University Information Science Corpus Christi, TX 78419
Knowledge Systems Laboratory University of Oregon Dr. John R. Frederiksen
701 Welch Road, Bldg. C Eugene, OR 97403 Dr. William Epstein Bolt Beranek & Newman
Palo Alto, CA 94304 University of Wisconsin 50 Moulton Street

Goery Delacote W. J. Brogden Psychology Bldg. Cambridge, MA 02138
Dr. Charles Clifton Directeur de L'informatique 1202 W. Johnson Street
Tobin Hall Scientifique et Technique Madison, WI 53706 Dr. Norman Frederiksen
Department of Psychology CNRS Educational Testing Service
University of 15, Quai Anatole France Dr. Edward Esty Princeton, NJ 08541

Massachusetts 75700 Paris FRANCE Department of Education, OERI
Amherst, MA 01003 Room 717D Dr. Michael Friendly

Dr. Thomas E. DeZern 1200 19th St., NW Psychology Department
Dr. Stanley Collyer Project Engineer, AI Washington, DC 20208 York University
Office of Naval Technology General Dynamics Toronto ONT
Code 222 PO Box 748 Dr. Beatrice J. Farr CANADA M3J 1P3
800 N. Quincy Street Fort Worth, TX 76101 Army Research Institute
Arlington, VA 22217-5000 5001 Eisenhower Avenue Dr. Michael Genesereth

Dr. Andrea di Sessa Alexandria, VA 22333 Stanford University
Dr. Lynn A. Cooper University of California Computer Science Department
Learning R&D Center School of Education Dr. Marshall J. Farr Stanford, CA 94305
University of Pittsburgh Tolman Hall Farr-Sight Co.
3939 O'Hara Street Berkeley, CA 94720 2520 North Vernon Street
Pittsburgh, PA 15213 Arlington, VA 22207

Dr. Herbert Ginsburg Prof. Edward Haertel Dr. Thomas Holzman CDR Tom Jones
Teachers College School of Education Lockheed Georgia ONR Code 125
Columbia University Stanford University Dept. 64-31 800 N. Quincy Street
525 West 121st Street Stanford, CA 94305 Zone 278 Arlington, VA 22217-5000
New York, NY 10027 Marietta, GA 30063

Dr. Henry M. Halff Mr. Daniel B. Jones
Lee Gladwin Halff Resources, Inc. Ms. Julia S. Hough U.S. Nuclear Regulatory
Route 3 -- Box 225 4918 33rd Road, North Lawrence Erlbaum Associates Commission
Winchester, VA 22601 Arlington, VA 22207 6012 Greene Street Division of Human Factors

Philadelphia, PA 19144 Safety
Dr. Robert Glaser Dr. Ronald K. Hambleton Washington, DC 20555
Learning Research Prof. of Education & Psychology Dr. James Howard

& Development Center University of Massachusetts Dept. of Psychology Dr. Douglas H. Jones
University of Pittsburgh at Amherst Human Performance Laboratory Thatcher Jones Associates
3939 O'Hara Street Hills House Catholic University of P.O. Box 6640
Pittsburgh, PA 15260 Amherst, MA 01003 America 10 Trafalgar Court

Washington, DC 20064 Lawrenceville, NJ 08648
Dr. Arthur M. Glenberg Dr. Wayne Harvey
University of Wisconsin Center for Learning Technology Dr. Barbara Hutson Dr. Jane Jorgensen
W. J. Brogden Psychology Bldg. Educational Development Center Virginia Tech University of Oslo
1202 W. Johnson Street 55 Chapel Street Graduate Center Institute of Psychology
Madison, WI 53706 Newton, MA 02160 2990 Telestar Ct. Box 1094, Blindern

Falls Church, VA 22042 Oslo, NORWAY
Dr. Marvin D. Glock Dr. Barbara Hayes-Roth
13 Stone Hall Department of Computer Science Dr. Alice Isen Dr. Ruth Kanfer
Cornell University Stanford University Department of Psychology University of Minnesota
Ithaca, NY 14853 Stanford, CA 95305 University of Maryland Department of Psychology

Catonsville, MD 21228 Elliott Hall
Dr. Sam Glucksberg Dr. Frederick Hayes-Roth 75 E. River Road
Department of Psychology Teknowledge Dr. R. J. K. Jacob Minneapolis, MN 55455
Princeton University 525 University Ave. Computer Science and Systems
Princeton, NJ 08540 Palo Alto, CA 94301 Code: 7590 Dr. Milton S. Katz

Information Technology Division Army Research Institute
Dr. Daniel Gopher Dr. Joan I. Heller Naval Research Laboratory 5001 Eisenhower Avenue
Industrial Engineering 505 Haddon Road Washington, DC 20375 Alexandria, VA 22333

& Management Oakland, CA 94606
TECHNION Neil Jacobstein Dr. Frank Keil
Haifa 32000 Dr. Shelly Heller Manager, Research and Department of Psychology
ISRAEL Department of Electrical Engi- Advanced Development Cornell University

neering & Computer Science Teknowledge, Inc. Ithaca, NY 14850
Dr. Sherrie Gott George Washington University 525 University Ave.
AFHRL/MODJ Washington, DC 20052 Palo Alto, CA 94301-1982 Dr. Wendy Kellogg
Brooks AFB, TX 78235 IBM T. J. Watson Research Ctr.

Dr. Per Helmersen COL Dennis W. Jarvi P.O. Box 218
Dr. James G. Greeno University of Oslo Commander Yorktown Heights, NY 10598
University of California Department of Psychology AFHRL
Berkeley, CA 94720 Box 1094 Brooks AFB, TX 78235-5601 Dr. Dennis Kibler

Oslo 3, NORWAY University of California
Dr. Dik Gregory Dr. Robin Jeffries Department of Information
Behavioral Sciences Division Dr. John Holland Hewlett-Packard Laboratories and Computer Science
Admiralty Research University of Michigan P.O. Box 10490 Irvine, CA 92717

Establishment 2313 East Engineering Palo Alto, CA 94303-097i
Teddington Ann Arbor, MI 48109
Middlesex, ENGLAND

Dr. Peter Kincaid Dr. Marcy Lansman Dr. Jane Malin Dr. Douglas L. Medin
Training Analysis University of North Carolina Mail Code SR 111 Department of Psychology

& Evaluation Group The L. L. Thurstone Lab. NASA Johnson Space Center University of Illinois
Department of the Navy Davie Hall 013A Houston, TX 77058 603 E. Daniel Street
Orlando, FL 32813 Chapel Hill, NC 27514 Champaign, IL 61820

Dr. William L. Maloy
Dr. Walter Kintsch Dr. R. W. Lawler Chief of Naval Education Dr. Jose Mestre
Department of Psychology ARI 6 S 10 and Training Department of Physics
University of Colorado 5001 Eisenhower Avenue Naval Air Station Hasbrouck Laboratory
Campus Box 345 Alexandria, VA 22333-5600 Pensacola, FL 32508 University of Massachusetts
Boulder, CO 80302 Amherst, MA 01003

Dr. Alan M. Lesgold Dr. Elaine Marsh
Dr. Paula Kirk Learning Research and Naval Research Laboratory Dr. Al Meyrowitz
O a k r i d g e A s s o c i a t e d Development Center Code 7510 Office of Naval Research
Universities University of Pittsburgh 4555 Overlook Avenue, Southwest Code 1133
University Programs Division Pittsburgh, PA 15260 Washington, DC 20375-5000 800 N. Quincy
P.O. Box 117 Arlington, VA 22217-5000
Oakridge, TN 37831-0117 Dr. Jim Levin Dr. Sandra P. Marshall

Department of Dept. of Psychology Dr. Ryszard S. Michalski
Dr. David Klahr Educational Psychology San Diego State University University of Illinois
Carnegie-Mellon University 210 Education Building San Diego, CA 92182 Department of Computer Science
Department of Psychology 1310 South Sixth Street 1304 West Springfield Avenue
Schenley Park Champaign, IL 61820-6990 Dr. Richard E. Mayer Urbana, IL 61801
Pittsburgh, PA 15213 Department of Psychology

Dr. John Levine University of California Prof. D. Michie
Dr. Janet L. Kolodner Learning R&D Center Santa Barbara, CA 93106 The Turing Institute
Georgia Institute of Technology University of Pittsburgh 36 North Hanover Street
School of Information Pittsburgh, PA 15260 Dr. Gail McKoon Glasgow GI 2AD, Scotland

& Computer Science CAS/Psychology UNITED KINGDOM
Atlanta, GA 30332 Dr. Michael Levine Northwestern University

Educational Psychology 1859 Sheridan Road Dr. George A. Miller
Dr. David H. Krantz 210 Education Bldg. Kresge #230 Department of Psychology
2 Washington Square Village University of Illinois Evanston, IL 60201 Green Hall
Apt. # 15J Champaign, IL 61801 Princeton University
New York, NY 10012 Dr. Joe McLachlan Princeton, NJ 08540

Dr. Clayton Lewis Navy Personnel R&D Center
Dr. Benjamin Kuipers University of Colorado San Diego, CA 92152-6800 Dr. Lance Miller
University of Texas at Austin Department of Computer Science IBM-FSD Headquarters
Department of Computer Sciences Campus Box 430 Dr. James S. McMichael 6600 Rockledge Drive
T.S. Painter Hall 3.28 Boulder, CO 80309 Navy Personnel Research Bethesda, MD 20817
Austin, TX 78712 and Development Center

Matt Lewis Code 05 Dr. Andrew R. Molnar
Dr. David R. Lambert Department of Psychology San Diego, CA 92152 Scientific and Engineering
Naval Ocean Systems Center Carnegie-Mellon University Personnel and Education
Code 441T Pittsburgh, PA 15213 Dr. Barbara Means * National Science Foundation
271 Catalina Boulevard Human Resources Washington, DC 20550
San Diego, CA 92152-6800 Dr. Don Lyon Research Organization

P. 0. Box 44 1100 South Washington Dr. William Montague
Dr. Pat Langley Higley, AZ 85236 Alexandria, VA 22314 NPRDC Code 13
University of California San Diego, CA 92152-6800
Department of Information Vern Malec

and Computer Science NPRDC, Code P-306
Irvine, CA 92717 San Diego, CA 92152-6800

Mr. Melvin D. Montemerlo Dr. Harold F. O'Neil, Jr. Dr. Judith Orasanu Dr. Peter Polson
NASA Headquarters School of Education - WPH 801 Army Research Institute University of Colorado
RTE-6 Department of Educational 5001 Eisenhower Avenue Department of Psychology
Washington, DC 20546 Psychology & Technology Alexandria, VA 22333 Boulder, CO 80309

University of Southern
Dr. Nancy Morris California CDR R. T. Parlette Dr. Steven E. Poltrock
Search Technology, Inc. Los Angeles, CA 90089-0031 Chief of Naval Operations MCC,
5550-A Peachtree Parkway OP-112G Human Interface Program
Technology Park/Summit Dr. Michael Oberlin - Washington, DC 20370-2000 3500 West Balcones Center Dr.
Norcross, GA 30092 Naval Training Systems Center Austin, TX 78759

Code 711 Dr. James Paulson
Dr. Randy Mumaw Orlando, FL 32813-7100 Department of Psychology Dr. Mary C. Potter
Program Manager Portland State University Department of Psychology
Training Research Division Dr. James B. Olsen P.O. Box 751 MIT (E-10-032)
HumRRO Director, Portland, OR 97207 Cambridge, MA 02139
1100 S. Washington Waterford Testing Center
Alexandria, VA 22314 1681 West 820 North Dr. Douglas Pearse Dr. Joseph Psotka

Provo, UT 84601 DCIEM ATTN: PERI-IC
Dr. Allen Munro Box 2000 Army Research Institute
Behavioral Technology Office of Naval Research, Downsview, Ontario 5001 Eisenhower Ave.

Laboratories - USC Code 1133 CANADA Alexandria, VA 22333
1845 S. Elena Ave., 4th Floor 800 N. Quincy Street
Redondo Beach, CA 90277 Arlington, VA 22217-5000 Dr. Virginia E. Pendergrass Dr. James A. Reggia

Code 711 University of Maryland
Dr. David Navon Office of Naval Research, Naval Training Systems Center School of Medicine
Institute for Cognitive Science Code 1142BI Orlando, FL 32813-7100 Department of Neurology
University of California 800 N. Quincy Street 22 South Greene Street
La Jolla, CA 92093 Arlington, VA 22217-5000 Military Assistant for Training Baltimore, MD 21201

and
Mr. William S. Neale Office of Naval Research, Personnel Technology, Dr. Wesley Regian
HQ ATC/TTA Code 1142 OUSD (R S E) AFHRL/MOD
Randolph AFB, TX 78150 800 N. Quincy St. Room 3D129, The Pentagon Brooks AFB, TX 78235

Arlington, VA 22217-5000 Washington, DC 20301-3080
Dr. T. Niblett Dr. Gil Ricard
The Turing Institute Office of Naval Research, LCDR Frank C. Petho, MSC, USN Mail Stop C04-14
36 North Hanover Street Code 1142PS CNATRA Code N36, Bldg. 1 Grumman Aerospace Corp.
Glasgow Gl 2AD, Scotland 800 N. Quincy Street NAS Bethpage, NY 11714
UNITED KINGDOM Arlington, VA 22217-5000 Corpus Christi, TX 78419

Mark Richer
Dr. A. F. Norcio Office of Naval Research, Dr. Steven Pinker 1041 Lake Street
Computer Science and Systems Code 1142CS Department of Psychology San Francisco, CA 94118
Code: 7590 800 N. Quincy Street E10-018
Information Technology Division Arlington, VA 22217-5000 M.I.T. William Rizzo
Naval Research Laboratory (6 Copies) Cambridge, MA 02139 Code 712
Washington, DC 20375 Naval Training Systems Center

Special Assistant for Marine Dr. Tjeerd Plomp Orlando, FL 32813
Commanding Officer, Corps Matters, Twente University of Technology

Naval Research Laboratory ONR Code OOMC Department of Education Dr. Linda G. Roberts
Code 2627 800 N. Quincy St. P.O. Box 217 Science, Education, and
Washington, DC 20390 Arlington, VA 22217-5000 7500 AE ENSCHEDE Transportation Program

THE NETHERLANDS Office of Technology Assessment
Congress of the United States
Washington, DC 20510

Dr. Ernst Z. Rothkopf Dr. Ramsay W. Selden Dr. Zita M Simutis Dr. Marian Stearns
AT&T Bell Laboratories Assessment Center Instructional Technology SRI International
Room 2D-456 CCSSO Systems Area 333 Ravenswood Ave.
600 Mountain Avenue Suite 379 ARI Room B-S324
Murray Hill, NJ 07974 400 N. Capitol, NW 5001 Eisenhower Avenue Menlo Park, CA 94025

Washington, DC 20001 Alexandria, VA 22333
Dr. William B. Rouse Dr. Frederick Steinheiser
Search Technology, Inc. Dr. Daniel Sewell Dr. Derek Sleeman CIA-ORD
5550-A Peachtree Parkway Search Technology, Inc. Dept. of Computing Science 612 Ames
Technology Park/Summit 5550-A Peachtree Parkway King's College Washington, DC 20505
Norcross, GA 30092 Technology Park/Summit Old Aberdeen

Norcross, GA 30092 AB9 2UB Dr. Albert Stevens
Dr. Roger Schank UNITED KINGDOM Bolt Beranek & Newman, Inc.
Yale University Dr. Michael G. Shafto 10 Moulton St.
Computer Science Department ONR Code 1142CS Dr. Gail Slemon Cambridge, MA 02238
P.O. Box 2158 800 N. Quincy Street Logicon
New Haven, CT 06520 Arlington, VA 22217-5000 P.O. Box 85158 Dr. David Stone

San Diego, CA 92138 KAJ Software, Inc.

Dr. Janet Schofield Dr. Sylvia A. S. Shafto 3420 East Shea Blvd.
Learning R&D Center Department of Dr. Linda B. Smith Suite 161
University of Pittsburgh Computer Science Department of Psychology Phoenix, AZ 85028
Pittsburgh, PA 15260 Towson State.University Indiana University

Towson, MD 21204 Bloomington, IN 47405 Dr. John Tangney
Karen A. Schriver AFOSR/NL
Department of English Dr. Ben Shneiderman Dr. Alfred F. Smode Bolling AFB, DC 20332
Carnegie-Mellon University Dept. of Computer Science Senior Scientist
Pittsburgh, PA 15213 University of Maryland Code 07A Dr. Kikumi Tatsuoka

College Park, MD 20742 Naval Training Systems Center CERL
Dr. Hans-Willi Schroiff Orlando, FL 32813 252 Engineering Research
Institut fuer Psychologie Dr. Ted Shortliffe Laboratory

der RWTH Aachen Computer Science Department Dr. Richard E. Snow Urbana, IL 61801
Jaegerstrasse zwischen 17 u. 19 Stanford University Department of Psychology
5100 Aachen Stanford, CA 94305 Stanford University Dr. Martin M. Taylor
WEST GERMANY Stanford, CA 94306 DCIEM

Dr. Valerie Shute Box 2000
Dr. Judith Segal AFHRL/MOE Dr. Elliot Soloway Downsview, Ontario
OERI Brooks AFB, TX 78235 Yale University CANADA
555 New Jersey Ave., NW Computer Science Department
Washington, DC 20208 Mr. Raymond C. Sidorsky P.O. Box 2158 Dr. Perry W. Thorndyke

Army Research Institute New Haven, CT 06520 FMC Corporation
Dr. Robert J. Seidel 5001 Eisenhower Avenue Central Engineering Labs
US Army Research Institute Alexandria, VA 22333 Dr. Richard Sorensen 1185 Coleman Avenue, Box 580
5001 Eisenhower Ave. Navy Personnel R&D Center Santa Clara, CA 95052
Alexandria, VA 22333 Dr. Robert S. Siegler San Diego, CA 92152-6800

Carnegie-Mellon. University Major Jack Thorpe
Dr. Colleen M. Seifert Department of Psychology Dr. Paul Speckman DARPA
Intelligent Systems Group Schenley Park University of Missouri 1400 Wilson Blvd.
Institute for Pittsburgh, PA 15213 Department of Statistics Arlington, VA 22209

Cognitive Science (C-015) Columbia, MO 65201
UCSD LTCOL Robert Simpson Dr. Sharon Tkacz
La Jolla, CA 92093 Defense Advanced Research Dr. Kathryn T. Spoehr Army Research Institute

Projects Administration Brown University 5001 Eisenhower Avenue
1400 Wilson Blvd. Department of Psychology Alexandria, VA 22333
Arlington, VA 22209 Providence, RI 02912

Dr. Martin A. Tolcott Dr. Heather Wild Dr. Joe Yasatuke
3001 Veazey Terr., N.W. Naval Air Development AFHRL/LRT
Apt. 1617 Center Lowry AFB, CO 80230
Washington, DC 20008 Code 6021

Warminster, PA 18974-5000 Mr. Carl York
Dr. Douglas Towne System Development Foundation
Behavioral Technology Labs Dr. William Clancey 181 Lytton Avenue
1845 S. Elena Ave. Stanford University Suite 210
Redondo Beach, CA 90277 Knowledge Systems Laboratory Palo Alto, CA 94301

701 Welch Road, Bldg. C
Dr. Kurt Van Lehn Palo Alto, CA 94304 Dr. Joseph L. Young
Department of Psychology Memory & Cognitive
Carnegie-Mellon University Dr. Michael Williams Processes
Schenley Park IntelliCorp National Science Foundation
Pittsburgh, PA 15213 1975 El Camino Real West Washington, DC 20550

Mountain View, CA 94040-2216
Dr. Jerry Vogt Dr. Steven Zornetzer
Navy Personnel R&D Center A. E. Winterbauer Office of Naval Research
Code 51 Research Associate Code 114
San Diego, CA 92152-6800 Electronics Division 800 N. Quincy St.

Denver Research Institute Arlington, VA 22217-5000
Dr. Ming-Mei Wang University Park
Lindquist Center Denver, CO 80208-0454

for Measurement
University of Iowa Dr. Robert A. Wisher
Iowa City, IA 52242 U.S. Army Institute for the

Behavioral and Social
Roger Weissinger-Baylon Sciences
Department of Administrative 5001 Eisenhower Avenue

Sciences Alexandria, VA 22333
Naval Postgraduate School
Monterey, CA 93940 Dr. Frank Withrow

U. S. Office of Education
Dr. Donald Weitzman 400 Maryland Ave. SW
MITRE Washington, DC 20202
1820 Dolley Madison Blvd.
MacLean, VA 22102 Mr. John H. Wolfe

Navy Personnel R&D Center
Dr. Keith T. Wescourt San Diego, CA 92152-6800
FMC Corporation
Central Engineering Labs Dr. Dan Wolz
1185 Coleman Ave., Box 580 AFHRL/MOE
Santa Clara, CA 95052 Brooks AFB, TX 78235

Dr. Douglas Wetzel Dr. George Wong
Code 12 Biostatistics Laboratory
Navy Personnel R&D Center Memorial Sloan-Kettering
San Diego, CA 92152-6800 Cancer Center

1275 York Avenue
LCDR Cory deGroot Whitehead New York, NY 10021
Chief of Naval Operations
OP-112G1 Dr. Wallace Wulfeck, III
Washington, DC 20370-2000 Navy Personnel R&D Center

San Diego, CA 92152-6800

