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PPS: A Parsimonious Production System

Ae Covrigaru and David Kieras

Abstract

Production systems are commonly used in cognitive modelling research. However, most produc-

tion system implementations are difficult to program because of the syntax complexity of the rules, and the

presence of obscure interactions between rules resulting from system features such as conflict

resolution. PPS is a production system implementation in which simplicity of syntax and explicitness of

control structure have been emphasized. Experience with several modelling projects suggests that this

approach is well suited for cognitive modelling. This paper describes the production rule syntax, and

summarizes the data structures and algorithms used in the implementation.

1. Introduction

The production system form of cognitive architecture is important not only because it has a long

history in cognitive modelling and artificial intelligence, but also because it is likely to continue to be popu-

lar in the future. Production systems are especially useful in the cognitive modelling domain because they

are well suited for the representation of procedural knowledge, and analyses based on production rule

representations appear to have enough empirical content to be useful in modelling human behavior in

complex tasks (e.g., Anderson, 1983; Kieras & Bovair, 1986; PoIson & Kieras, 1985; Thibadeau, Just, &

Carpenter, 1982).

The major virtue claimed for this architecture is the simplicity and modularity of the knowledge rep-

resentation, along with the potential for parallelism. In practice, however, most production system imple-

mentations are complex and difficult to program in. This seems to be due to the following two reasons:

* The production rule syntax can be complex, and can reflect commitments to specifics of the cognitive

architecture, such as the number and organization of the memory systems. The programming can

become unduly difficult if the programmer wants to implement a set of cognitive assumptions different

from the committed architecture, or wants to work with very simple data structures.

* It can be difficult for the programmer to predict or control when a particular production rule will fire,

since many implementations involve complex "conflict resolution" and "refractory" conventions.

These conventions can simplify the programming at the level of individual rules, but the result is often

that rules interact in ways not obvious from the rules themselves. For example, a rule may not fire if
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another rule, rating higher in the conflict resolution scheme, also has its conditions met. Alternatively,
if a rule has fired before, it may be refractory (not fire again) unless its conditions are matched in a way
considered "new," which again may not be apparent from the rule itself. These interactions with other
rules, and the past firing history, can completely destroy the desirable modularity of the production
rules to the point where using this architecture has few programming advantages over coding directly
in LISP.

These two factors are obstacles to the wider use of production system models in cognitive mod-
elling research and practical applications. For this reason, we developed a production system imple-
mentation, called Parsimonious Production System (PPS), in which simplicity and explicitness of repre-
sentation and programming was emphasized, at the possible expense of compactness and power. We
also wanted an implementation that was coded directly in LISP for portability reasons, and so were willing
to deemphasize speed and capacity.

From the cognitive modeller's point of view, the key features of PPS are as follows:

e The syntax of the rules is as simple as possible, and in practice, PPS rules are easy for both the pro-
gra...,- and non-P;J.Jrammmm. 'to rLcau anu lnieL-pei.

* There are no learning mechanisms in PPS - it is intended to support the development of static
production systems, rather than ones that change with experience.

* The system's working memory structure is very simple, and allows the programmer to define the mem-
ory storage systems just by usage, rather than having a fixed memory architecture.

* The programmer is encouraged to make the control structure in the cognitive model explicit, rather
than relying on implicit mechanisms in the production rule interpreter. Since any number of rules may
fire at once, and there are no conflict resolution or refractory mechanisms built into the system, the
production rules have to make the desired control structure explicit.

Thus PPS can be viewed as an experiment in simplicity of production rule architecture - can sig-
nificant and useful systems be built within this simple framework?

2. System Overview

2.1. What is PPS ?

PPS is a production system shell. The system consists of two parts: A compiler and an inter-
preter. The input to PPS is a set of statements of the form <IF Condition THEN Action>, called pro-
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duction rules, and an initial state of the system's working memory. The working memory is a collection of

the clauses of the form (a1 ...an) where ai i,1...n are constants (atoms in Lisp notation). The following

steps are taken by PPS in order to process its input: First, the compiler builds a data flow network that

represents the production rule set, preparing them for the interpreter. Then the interpreter executes the

productions by iteratively finding the subset whose conditions match objects in the system's working

memory and executing the actions of those production rules. Each match-execute iteration is called a

cycle.

2.2. Why a data flow net is used

The bottleneck of production system interpreters is performing the matching of the conditions in

each cycle. Forgy (1979, 1981, 1982) developed an approach in which the conditions are rearranged into

a network in such a way that the matching process considers only the modifications of the state of the sys-

tem from the previous cycle, and not the whole set of conditions. In addition, the structure of the

pattern-matching net enables us to test the parts of the conditions of many production rules at once
(implicit parallelism).

2.3. Summary of system components

This section is a high-level description of the system's components. PPS consists of two mod-

ules: A compiler, which compiles the patterns in the given set of production rules into a data flow net, and

an interpreter, which interprets the production rules using the data flow net.

Compiler: The compiler in PPS takes a set of production rules written in their formal syntax and trans-

forms them into the more efficient form used later in the run time (interpreting) stage of the system. A data

flow network is created that stores the information represented in the conditions of individual production

rules. First a discrimination net is built representing the items in each pattern in the conditions. Then the

compiler builds the combining net which represents the relationships of the patterns in each condition. At

the bottom of the data flow network each production rule condition is represented by a single node.

Interpreter: The interpreter executes a set of production rules that are compiled by the compiler into a

data flow network. The function of the interpreter is to perform the cycles of recognizing the set of pro-

duction rules to be fired and execute their actions. Those cycles are performed until either a specific

Stopinterpreter action is executed (as one of the actions of a production rule) or the set of production

rules to be fired is empty.

A cycle consists of updating the working memory, propagating the changes down the data flow network to

update the list of matching production rules, and finally, executing the actions of these production rules.

In the current implementation of PPS there is no conflict resolution. All the production rules that have
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matching conditions are fired. Furthermore, a production rule will fire on each cycle as long as its condition
is matched by working memory elements.

The "Working Memory": An element in the working memory is called a clause. A clause is a list (in Lisp
notation) of atoms that represent constant values. The working memory for PPS is not a separate data
structure; rather the working memory is represented by the state of the pattern nodes in the network
which represent the patterns in the rule conditions. Such a node has a status and a set of variable bind-
ings (that can be empty). When a clause is added to the working memory, it matches a pattern, and the
status of the node representing that pattern is set to ON. The list of variable bindings (if the pattern has
variables) is stored with that node.

2.4. Implementation

PPS is implemented on a Xerox 1108 LISP machine in the Interlisp-D environment. Even
though the system takes full advantage of the Interlisp-D environment, the code implementing the algo-
rithms was kept very portable and was actually transported easily to the IBM LISPNM dialect . The inter-
face with the Interlisp-D system is through a collection of menus that appear in a control window. Select-
inn items in these mensi rn'i aa i^.mrn!I'.^n ^, nd!e or -I. v -s ..- - .

facilities are available, such as display of working memory contents, tracing the execution of the rules,
recording a selected subset of the trace, displaying and editing of the rules, and displaying a graphical
representation of the data flow net for a set of production rules.

3. The Production Rules

3.1. Overview

The production rules in PPS are the language in which the user of the system specifies the algo-
rithm to be performed by the PPS interpreter. In order to specify any condition in the production rule lan-
guage, it must be possible to express any well formed formula within the syntax of the conditions. In the
rest of this section we will formally define the syntax and semantics of the conditions and actions in the
production rules.

3.2. Production Rule Set

A set of production rules is an unordered list of rules in the form:

(ProductionRuleName IF (Pattern1 Pattern2...Patternn) THEN (Action1 Action2...Actionm))
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The list following the IF part is the condition. If the working memory contains clauses that match all

of the patterns in the condition, the rule fires. The part following the THEN is the action list. It consists of

a sequence of actions to be performed by the interpreter if the production rule fires.

3.3. Production Rule Condition

The condition of a production rule is a conjunction of patterns (P1 P2***Pn) where each pattern Pi,

i=1,2...n, has the form: (e1 ...ek). Each element el, 1=1,2,...k is either a constant, a variable designated by

a special prefix (the character"?"), or a wildcard (the string "$$$"). The constant elements in a pattern have

no interpretation except as strings. Each pattern can also appear in negation form as (NOT Pi). A negated

pattern is matched only if there is no clause in working memory that matches the body of the pattern. If a

negated pattern contains a variable, the same variable must appear in a non-negated pattern elsewhere in

the condition, in order to ensure that the variable has a defined binding if the production rule fires. In

addition, the form (NOT P1 P2... Pn) is interpreted as the negation of the conjunction of the patterns

Pl P2...Pn. Any variables appearing in the patterns are treated the same as variables in single negated

patterns.

Any boolean function can be represented with one or more production rules. The AND function

is represented by having two or more patterns in the same condition, the OR function is implicitly repre-

sented by two separate production rules and the NOT function is represented explicitly in the conditions.

3.4. Production Rule Action

The action of a production rule is a list of actions (A1 A2...Am) which are executed in order if the

rule fires. Each Ai, i=1,2 ...m, in the action-list has the form: (fn a1....ak) where fn is one of the known PPS

functions (AddClause, DeleteClause or StopInterpreter), or a user-defined function, and a1 ...ak are its ar-

guments (the arguments can be either constants or variables whose domain is the condition of the pro-

duction rule). Each function is required to return either NIL, a string (in which case the interpreter halts), or

a list of the form ((list of clauses to add) (list of clauses to delete)) which specifies clauses to be

added and removed from working memory.

The action functions are executed sequentially when the production rule is fired. The whole list of

actions in a production is executed for each possible set of bindings of variables for that production. The

order of the action execution within the set of production rules to be fired is: All the deletions from the

working memory in one cycle are performed before the additions so adding and deleting the same ele-

ment in the same cycle will always add an element to working memory.
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4. The Data flow Net

4.1. Overview

The set of production rules are compiled into a network that is a directed graph, starting with one
root node and ending with rule nodes, where each rule node represents one production rule in the sys-
tem. Conceptually, the data flow net is divided into two parts: a discrimination net and a combining net.

4.1.1. Discrimination net

When a new clause is entered into the working memory or an old clause has to be deleted, it is
necessary to identify the patterns that it matches. This is done by a standard discrimination net mechanism
(Charniak, Riesbeck & McDermott, 1980). The discrimination net starts at the Root-node, contains
item-type nodes which represent the items inside a pattern, and the Pattern-nodes. The following is an
example of the discrimination net mechanism.

Example: For example consider the patterns (?Person ISA boy), (Fred ISA ?Something) and
(?Person ISA ?Something). The discrimination net representing those patterns is shown below. The
ce-Inj f (redl IC A y ::.1' m.ach a:" VI ,aeu paiiefnici. Maicning it against the patterns (?Person ISA boy)
and (?Person ISA ?Something) will only take matching four items. Thus, instead of iterating over all the
clauses in the conditions trying to find the one that matches, the system branches to the small subset of
patterns that have the potential of matching directly, based on one item in the clause.

ARoot

,1ISA CSISA

I boy I ?Something I ?Something A

A Root node

p Patterni ( Pattern2 p Pattern3 E[3 Item node

® Pattern node

Figure 1: The clause (Fred ISA boy) is matched item-by-item; Fred matches the
variable ?Person and the constant Fred, ISA matches at the corresponding constant
nodes, and boy matches both the constant boy and the variable ?Something. Thus the
three patterns matching this one clause are determined.
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4.1.2. Combining net

This part of the net, starting from the nodes representing the patterns, consists of combining

nodes that combine the patterns in each rule's condition, keeping account of the structure of the condi-

tion and the variable bindings. Each condition is eventually combined into one combining node, and that
node points to the rule node, which is a terminal node in the net and represents the corresponding pro-

duction rule. The combining nodes are either And-node or Negation-node type.

Ro Root o

9 should

mON be

; l Nodes Glossary

I Patten2 ( )PaUrn3 ^ Root node

4 \ I m Item node

I Patten2 & (- Pauernl) - PatternI & Pattern3 Pattern node

+ Pi& P2 M Negation node

Rule node

Figure 2: The negation node combines Pattern2 and the negation of Patternl into a
conjunction that forms the condition of production rule P1; likewise the and node conjoins
Patternl and Pattern3 to form the condition of production rule P2.

Example: Consider the following two production rules:

(P1 IF ( (NOT(?switch is on))

(?switch should be on))

THEN ( (Turn ?switch on)

(AddToWorkingMemory ?switch is on)))

(P2 IF ( (?swtch is on)

(?switch should be off))

THEN ( (Turn ?switch off)

(DeleteFromWorkingMemory ?switch is on))
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These productions will be compiled into the net in Figure 2. Initially the status of all the nodes is
OFF. The labels of the nodes in the discrimination net are the value attributes of each node and the labels
in the combining net are the names of the nodes and what they represent in the net

4.2. Node Types, their attributes and their functionality

In this section we will describe the various nodes in the data flow net. This includes their at-
tributes, function, and what they represent according to the original production rules. Besides the spe-
cific attributes to each type of node, all the nodes in the net have the type attribute and all the
non-terminal nodes have a list of their successors. Those properties do not appear in the individual node
descriptions. The description goes from the top of the net (root node) to the terminal nodes (rule nodes).

4.2.1. Special Nodes

Root-node: This is the root of the net and the only entry point to the net.

AlwaysTrue-node: This node is created in every network specifically for the cases where the condition
of a production rule contains only patterns in negation form. The (AlwaysTrue) pattern represented by
tha Always'Tr ruElmod is always in ihe working memory so a negated node will be paired with it and
combined into a negation node in the system.

4.2.2. Intra Pattern nodes

The following are the nodes that represent elements in the patterns, and appears only in the dis-
crimination net.

Constant-node: This is a node representing an constant item in a pattern. A constant is any item that is
not a variable or a wildcard. The attribute of this type of node are the value which is the constant the
node represents.

Variable-node: This node represents a variable in a pattern. A variable in PPS notation is any string in a
pattern that starts with the prefix "?". Its attributes are the value and the name of the variable it repre-
sents.

Wildcard-node: This node is used in the net to enable the PPS user to have items in patterns that
have the function of matching any item in a clause that is in that position without keeping track of its
value. A wildcard in PPS notation is the string "$$$".

Pattern-node: The pattern node type is used to represent the individual patterns in the conditions in
production rule set. This node has the attributes consisting of the pattern in its original form (a de-

8



bugging aid), the list of variable names in the pattern (used by the interpreter for binding), a flag stating

if the pattern contains any wildcards, and a status attribute. This last attribute is ON if there is any

clause that entered in the working memory that matched this pattern and OFF otherwise. Initially, the

status of all pattern nodes is OFF.

4.2.3. Combining nodes

In order to understand the function of the combining nodes described below we need to define

binding sets. A binding set is a list of the form (varname1 value1 varname2 value2...varnamek valuek)

where each value1 is the binding of the variable with the name varname1. Each clause entered into the net

that matches a pattern with variables will create a set of bindings for that pattern where each variable in the

pattern is bound to the corresponding item in the clause.

And node: An and-node has exactly two predecessors which can be any combination of and-nodes,

negation-nodes, or pattern-nodes. It represents a combining function analogous to a logical AND of

the two predecessors. The attributes of an and-node are the left and right predecessors, the status,

the set union and the set intersection of the lists of names of variables from both predecessors and

the list of consistent bindings (described below).

If no variables are involved (the predecessors do not have variables) the and node will have its

status ON only when both predecessors have their status ON. If either of the predecessors has variables,

then the node will be ON only if both predecessors are ON and there are bindings of variables from the
predecessors that are consistent, meaning that variables that appear for both predecessors have the

same bindings.

For example the binding set (?x frog ?y green) is consistent with the binding set

(?x frog ?z jumps) because the variable ?x that appears in both sets has the same binding. These

binding-sets will be combined into the set (?x frog ?y green ?z jumps). On the other hand the set

(?x frog ?y green) is not consistent with the set (?x watermelon ?z green) because the common

variable ?x is bound to frog in the first set and to watermelon in the second.

Negation node: This type of node represents a combining function analogous to the logical expres-

sion (A & -B) where A and B are the two predecessors. The positive predecessor A, can be any

combining node or pattern node and the negative predecessor B, must be a pattern node. The

negation nodes are needed when there is a negated pattern in a condition. This node has the at-

tributes of status, the union of variable names and their intersection from its predecessors, and a list of

variable bindings.
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If no variables are involved (in the negated predecessor pattern) the negation node will have its status
ON only when no clause matching this pattern is in the working memory, and the positive predecessor
is ON. If the pattern has variables, then the node will be ON only if there are bindings of variables on
the positive node that are not consistent with those of the negated pattern's bindings. Thus the
negation node takes the positive predecessors binding sets, and removes any binding sets that are
consistent with the negative predecessors binding sets and passes this smaller set of bindings down.

To illustrate the function of the negation node, suppose the positive predecessor has the binding
sets (?animal bear ?color black) and (?animal bear ?color white) and the negative predecessor
has the binding set (?animal bear ?color black ?description furry). The binding set
(?animal bear ?color black) is consistent with (?animal bear ?color black ?description furry) and
so will not be passed down, but the binding set (?animal bear ?color white) will be passed down the
net because ?color has different bindings in the positive and negative predecessors.

4.2.4. Terminal Node

Rule-node: This is the terminal node in the network. Its function is to keep track of the information
needed to fire a prodution nelA Its attrihutres r fe u O u .uIs------------

-_ _. ---. -- - % .. .. ~ l C1i I lul ly Li IC be

be fired, OFF otherwise), its predecessor, the actions to be performed when the production rule is
fired and the list of all of the binding sets passed down from the combining nodes. On firing, the ac-
tions are executed once for each set of bindings.

5. The Compiler

The compiler first builds a discrimination net of the different patterns in the conditions, and then
constructs a combining net that combines the patterns to represent the condition of each production rule
terminating with a single combining node that is a unique predecessor of a rule node.

Note that in PPS, the order in which rules appear in the list of productions, or the order of the pat-
terns in conditions, does not determine which rules will fire, nor the order in which they fire. However, in
constructing the combining net, the compiler uses a fast heuristic that takes advantage of the fact that the
cognitive model programmer will tend to write the production rules in a certain order for reasons of legibility
and clarity. Rules that have condition patterns that appear in many other rules, such as statements of
general goals, tend to appear earlier in the list of rules than ones that have condition patterns such as
specific goals that appear only in a few, or individual, rules. Likewise, within a rule, more general
(frequently occurring) patterns tend to appear first in the rule condition, with more specific tests appearing
later. PPS does not require rules to have this ordering property, but it is a natural way to write the rules in a
cognitive model.
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The compiler can exploit this ordering property in constructing the combining net by simply col-

lecting pairs of patterns in the order that they appear in the rules. The resulting network may not be the

optimal one, either in size or run-time speed, but the compilation time with this approach is considerably
better than that of an optimizing compiler algorithm we have experimented with, and the run time appears

to be close to what an optimizing compiler would produce. Since in a cognitive modelling domain there

are many revisions to the model, but only a few "production runs," this tradeoff is the appropriate one.

The following sections summarize the algorithms used by the compiler in the discrimination net

construction and the combining phase. For a more detailed description of the compilation algorithms see
Appendix A.

5.1. Discrimination Net Phase

This is the procedure of compiling the patterns into a discrimination network to create one node to
represent each distinct pattern in a production rule set. Each pattern in the conditions is then replaced by
the name of its representative node in the net.

The discrimination algorithm works as follows: It picks up a pattern and, starting at the root node

and with the first item in the pattern, it looks for the node representing that item among the immediate

successors. If the node is found, the process is repeated with the second item in the pattern and the

successors of the representing node. As long as the nodes are found in the net, nothing new is created.
If an item has no representing node among the immediate successors, a new node is created to represent

the new item and added to the set of successors of the last node. When the compiler exhausts all the
items in the pattern it looks for a pattern node among the successors of the last node. If one is found it

means that the pattern was encountered in a previous production rule, otherwise a new pattern node is

created and added to the set of successors of the node representing the last item. In either case the pat-

tern node (found or newly created) replaces the original pattern in the rule condition. The discrimination

procedure is repeated for each pattern in the condition and for each condition in the set of production

rules.

Patterns in negation form are treated the same way by the discrimination procedure, but the pat-

tern in the condition is replaced with the name of the pattern node prefixed by the character "-" signifying

the fact that the pattern is in negation form. This prefix will be noticed later by the combining net building

procedure and used to create negation nodes.

As an example consider the following production rule:

(P1 IF ( (?switch is off)

(?switch should be on))
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THEN ( (Turn ?switch on)

(DeleteFromWorkingMemory ?switch off)

(AddToWorkingMemory ?switch is on)))

Suppose the patterns are represented by the nodes patteml and pattern2 (see Figure 2); after the dis-
crimination process it will look like this:

(P1 IF ( patterni

pattem2)

THEN ( (Tum ?switch on)

(DeleteFromWorkingMemory ?switch off)

(AddToWorkingMemory ?switch is on)))

5.2. Combining Phase

The second phase in the compilation procedure is to combine the patterns in each condition such
that one combining node will represent the condition of each production rule. In general, the compiler
builds a net starting from the pattern nodes down to rule nodes. In the course of generating this net, it re-
places pairs of nodes in the conditions with combining nodes until each condition consists of only one
node. Finally the compiler creates a rule node in the net that holds the information about the action of the
production rule and its variable binding sets.

At the beginning of this phase, the conditions are represented as a list of pattern node names.
The compilation of a condition is as follows: As long as the condition consists of more than one node
name do: Pick the first pair of nodes and determine if they can be combined by either an and node or a
negation node. If not, move one of them to the end of the condition and pair the other with the next node
name in the condition; If so, search the intersection of those node's successor lists to determine if the
combining node was created in a previous compiled condition. If such a node is found, replace the pair in
the condition with the name of the combining node and repeat the procedure on the next pair. If a com-
bining node does not exist, create one and replace the pair in the condition with its name. When the con-
dition consists of only one node name, create the terminal rule node, and go on to the next condition.

6. The Interpreter

The interpreter runs in a cycle of matching the conditions and executing the actions of the pro-
duction rules whose conditions match. This cycle is repeated until either there are no productions that
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match, or one of the actions stops the system deliberately. In order to give a clear description of the

matching algorithm, it is useful to define the 'state of the system".

6.1. The "State of the System"

Each cycle of the interpreter can be looked at as a time pulse such that t1 will be the beginning of

the first cycle, t2 the second and so on.

At time tj the state of the system is as follows:

o Database1 : The contents of the database consist of the set of pairs (status, binding sets) of all of the

pattern, combining, and rule nodes in the data flow net.

* WorkingMemory1: A subset of Databasei which is all the pairs (status, binding sets) of pattern nodes

only.

* FiredListi: The list of production rules whose conditions match the current contents of the working

memory.

* AddListi: The list of clauses to be added to working memory.

DeleteListj: The list of clauses to deleted from working memory.

Each of the components of the state of the system can be empty at any time, but if FiredList is

empty, the interpreter will stop cycling.

6.2. The Matching Algorithm

This section is a summary of the matching algorithm. A more detailed description of the

procedures used in the interpreter appears in Appendix B.

The matching process is executed in two conceptually different phases. Phase one is discrimi-

nating a clause in the working memory by updating the pattern nodes, and phase two is propagating the

changes into the combining net to update the whole database. The second phase results in the updated

state of FiredList. In the current implementation it was decided to make the updating changes depth first

for each clause in DeleteList and AddList . This approach saves bookkeeping during the propagation of

changes and is more straightforward conceptually.

Thus, for each clause in DeleteListj and AddListj the interpreter does the following: First it dis-

criminates the clause, finding all the pattern nodes that match the clause. Each pattern node is updated to

show whether the clause was added or deleted, and changes to the bindings sets if variables are in-
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volved. For each of those nodes the interpreter calculates whether the state of the node has changed,
and if so, the changes are propagated to the successors. The update-propagate procedure is repeated
for each successor. This depth-first update-propagate process is stopped either when the changes do
not change the state of a node, or a rule-node is reached. If the new status of the rule node is ON, the
rule is added to FiredList, otherwise the rule is removed from FiredList.

When each clause in DeleteListi and AddListi has been processed, the changes in the net results
in Databasei+1 and FiredListkl. Next the actions in the production rules in FiredListj+j are executed, re-
sulting in DeleteListj+1 and AddListkl. Then cycle i+1 starts.

6.3. An Example

This example will illustrate how the matching algorithm is superior to a simple production system
interpreter in terms of the steps needed to match a simple production rule condition that has two patterns
and two variables. The example will be displayed for both, a simple interpreter and the PPS interpreter.
For more detailed discussion see Forgy (1982).

Suppose we have the following production in the system:

(P1 IF ( (?switch is ON)

(?switch is connected to ?light)

(NOT (?light blinks)))

THEN ( (Tum?switchON)

(AddToWorkingMemory ?light blinks)))

and the working memory consists of the following items:

(S1 is ON) (S1 is connected to L56)
(S2 is connected to L3) (S3 is ON)

(S3 is connected to Li) (S4 is ON)

A simple interpreter, in order to find out if P1's condition matches the facts in the working memory,
would have to find and mark all the clauses that match the first pattern, which is one scan of the working
memory, then for each marked clause, find all the clauses that match the second pattern and are consis-
tent with the first. In this example, three more passes over the working memory would be required. If
there are more than two patterns the process would grow exponentially. Furthermore, the whole process
will be repeated every cycle and for every rule, even if the changes in the working memory are unrelated to
the nule.
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The same example is treated by the PPS interpreter in a completely different way. First, P1 is
compiled into a net as shown in Figure 3. Since the PPS matching algorithm is concerned only with
changes in the state of the system, suppose P1 is not in FiredList and all the clauses shown above as
facts in working memory are in AddList at this moment.

Name: patternl Name: pattenZ Namer pattern3
TpYP P- 110" Tper n-no Type: p-nole
Statner ON StaauL ON Sty: OFF
Represents: (?switch is ON) Represents: (?switch is connected to Wight) Representw (?light bliks)
Bindingsets: ((?switch SI) Bialinpete ((?switch SI ?ligh L3) Bindipetr NIL

(?switrh S3) (7switch S3 nlight LI)
(?switch S4)) (?switch S4 night L56))

4Name: aml-,del
Type: anode
Stah- ON
Binldingets: ((?switch Sl night L3)

(?ewitdl S3 ?ligpt LI))

\ Type negabin-node
Staym ON Nodes ale
Bindingsete ((7ewitch SI ?mlai L3)

(?switch S3 ?Iight LI)) Root node

El Item node

O Pastem node
Name: PI

R Tpe: rule-node EE Adnd

Statuse ON
Bindingsets ((?awitch SI 1i NegaDOn node

(?switch S3 ?light LI)) Role node

Figure 3: The part of the data flow net for P1 including only the nodes from the patterns
down to the rule.

The first step is to update the working memory which takes a time proportional to the number of
the different patterns that each clause matches (in this case, just the number of the clauses). Second, the
changes are propagated down the net. Updating and-nodel consists of computing the consistent
binding sets that were added, which will take matching nine values. Then, one more step is done to set
the status of P1 and its bindings. As long as none of the patterns are changed, P1 will be fired each cycle
without recomputing its binding sets. This state is shown in Figure 3. If in the next cycle the clauses
(Li blinks) and (L3 blinks) will be added to the working memory, it will change the state of the pattern
node pattern3 creating the binding sets (?light LI) and (?light L3) and thus changing the node's status
to ON. This fact will require updating the successor of pattern3, in this case removing from the binding
sets of neg-nodel all the sets that contain the bindings of ?light to Li and L3. This will leave neg-nodel
with no bindings and will change its status to OFF. Propagating this change again to the successor will
turn the status of the rule node P1 to OFF, removing it from FiredList.
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7. Conclusions

The PPS package has been used over the last few years to construct several fairly complex mod-
els of routine cognitive skill in human-computer interaction (e.g. Poison & Kieras, 1985; Bovair, Kieras, &
Poison, in preparation), and a set of models concerning problem-solving with a mental model for a piece
of equipment (Kieras, in press; in preparation), and a few other smaller projects. The flexibility of PPS with
regard to memory organization, the simple rule syntax, and the explicit representation of the control struc-
ture was critical to the easy construction and empirical value of these models. The fact that PPS can be
used routinely to easily construct cognitive models shows that the package meets its intended goals fairly
well.

However, it seems clear that some of the simplicities of PPS are likely to present serious problems
if an attempt is made to extend it to learning situations; for example, learning mechanisms such as
Anderson's (1983) are based on the presence of conflict resolution rules that enable newly acquired pro-
duction rules to eventually dominate previously learned rules. The PPS architecture would have to be
changed to implement such learning mechanisms.
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Appendix A: Compiler Functions

The following sections describe the algorithms to compile a set of rules. In the compilation pro-
cess as well as in the matching process, only the conditions of production rules are relevant; the actions
and their format plays no role.

Before starting the compilation, the compiler scans the given set of production rules, checking for
syntax errors, variable bindings (variables must appear in at least one pattern in positive form in the condi-

tion of a production rule), and also translates conditions with negations of conjoined patterns into condi-
tions with simple negations that the compiler understands.

Representing negation of conjunctions is done by replacing the single production nule with sev-
eral production rules that are logically equivalent to the original rule based on the equivalence of
(NOT (A & B & B)) to ((NOT A) v (NOT B) v (NOT C)). In PPS the logical OR is implicit in that two
or more production rules are interpreted as a disjunction; in the above example, we can replace one pro-
duction with three others, each having the condition of one of the disjunctives in the equivalent formula,
all with the same action list as the original. This is done transparently to the user.

Discrimination Net Construction

The discrimination procedure is performed by iterating over the list of rules and replacing each
pattern in the conditions with the corresponding node name as the net is created. The following algorithm
describes the function Discriminate-Pattern that is applied to each pattern in the conditions. In this
algorithm we assume the definitions the predicates:

(Matchitem item node) - Matches item against node. If node has the same type as item and the value
of node is item it returns node, otherwise, NIL.

(CreateDiscriminationNode item) - Takes item, an element of a pattern, and creates a node in the
net, returning the name of the new created node.

(CreatePatternNode node) - Takes node, the last element of a pattern, and creates a node in the net
of type pattern-node, returning the name of the new created node.

Procedure: Discriminate-Pattern

Input: Root-node, Pattern
Output: Name of pattern node
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{Begin Discriminate-Patteml

1. Set current-node to be the Root-node and successors to be the list of
successors of current-node.

2. If there are no more items in the pattern, go to 4; otherwise, set current-item to be
the first item in the pattern and remove it from the pattern.

2.1 . Set type to be the type of current-item (constant, variable or wildcard). If
the type of current-item is variable, add it to the variable-list. If the type is
wildcard, set wildcard flag to T.

3. For each successor apply Matchitem to current-item and the successor. If
current-item matches any successor, set that successor to be current-node and
go to 2. Otherwise apply CreateDiscriminationNode to create a new node to
represent current-item, add that node to the successors of current-node. Set
current-node to be this new node and go to 2.

4. If among the successors there exists a node of type pattern-node, exit
returning that node, otherwise call CreatePatternNode to create a new
node of type pattern-node to represent the pattern, put the variable list

and the wildcard flag on the node, add it to the successors of current node
and exit returning the new node.'

(End Discriminate-Patternm

Pattern Combining Net Construction

The combining net construction is performed by iterating over the condition of a rule and replac-
ing each pair of patterns in the conditions with a combining node name as the net is created. The follow-
ing algorithm describes the function Compile-condition. In this algorithm we make use of the
predicates:

(NonsenseCombination nodea node2) - Tests if two given nodes can be validly combined by an
and or negation node. The rules for invalid combination of two nodes are:

1) Both nodes are patterns in negation form.

2) node2 is a pattern in negation form, both nodes have variables but the intersection of the sets of
variables is empty.

3) node2is a pattern in negation form, with variables, but node 1 does not have variables.
4) node I is a pattern in negation form, both nodes have variables, but the intersection of the sets of

variables is empty.

5) node 1 is a pattern in negation form with variables, but node2 does not have variables.
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(DetermineNodeType node1 node2) - Determines the type of a combining node for two given
nodes. If either node is a pattern in negation form, the combining node will be a negation node; oth-
erwise it will be an and node.

(FindCombiningNode node1 node2) - Determines if the two given nodes have a combining node
among their successors. If such a node is found, its name is returned; otherwise NIL is returned.

Procedure: Compile-Condition

Input: Root-node, Condition

Output: Name of rule node

{Begin Compile-Condition}

1. Set left-of-pairto be the first element (node) of the condition and remove it from
the condition.

2. If condition is empty go to 7; otherwise, set right-of-pairto be the first element and

remove it from the condition.

3. Apply NonsenseCombination to the pair. If a combination of the two nodes is
invalid by the rules above, add left-of-pair to the end of the condition, and go to 1;

otherwise go to 4.

4. Determine the type of combining node of the pair by applying

DetermineNodeType to left-of-pair and right-of-pair. Apply

FindCombiningNode to left-of-pair and right-of-pair. If a combining node ex-

ists, go to 6; otherwise go to 5.

5. Create a new combining node for the pair and add it to the list of successors of

left-of-pair and right-of-pair.

6. Add the combining node name to the condition. Go to 1.
7. At this point, left-of-pair represents all the patterns in the current condition. Create

a new rule node as successor to left-of-pair, and exit returning the name of the rule

node.

(End Compile-Condition}
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Appendix B: Interpreter Functions

This algorithm is performed until the interpreter is stopped by an empty set of production rules to
be fired or deliberately by the actions. The algorithm to execute one cycle is as follows:

{Begin Interpreter-Cyclel

1 . For each clause in DeleteList do
Update-FiredList (DeleteList,root-node, list-of-rules-to-be-fired)

2. For each clause in AddList do
Update-Fired List (AddList, root-node, list-of-rules-to-be-fired)

3. For each production-rule in list-of-rules-to-be-fired do
Execute-Actions (production-rule)

4. If list-of-rules-to-be-fired is empty, stop otherwise go to 1.
(End Interpreter-Cycle)

Update Fired List

This is the matching algorithm of PPS. The procedure performed with the AddList is the same as
the procedure with DeleteList so the reader should assume that Update-FiredList is called twice each cy-
cle, first with DeleteList and then again with AddList. The algorithms of the procedures
Discriminate-Clause, UpdatePatternNode and Propagate-Changes used here are described
in detail later.

Procedure: Update-FiredList
Input: list-of-clauses, root-node, list-of-rules-to-be-fired
Output: list-of-rules-to-be-fired

(Begiri Update-FiredListi

1. Set current-clause to be the first clause in list-of-clauses and remove it from
list-of-clauses.

2. Set set-of-matching-pattern-nodes to be the set of patterns returned from ap-
plying Discriminate-Clause to current-clause.

3. Set current-node to be the first node in set-of-matching-pattern-nodes and re-
move it from set-of-matching-pattern-nodes.

4. Apply UpdatePatternNode to current-node.
5. Apply Propagate-Changes to all the successors of current-node that were

changed.
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6. If set-of-matching-pattern-nodes is empty go to 7; otherwise go to 3.
7. If list-of-clauses is empty go to 8; otherwise go to 1.
8. Return the updated list-of-rules-to-be-fired.
{End U1date-FiredListi

Update Working Memory

The following is the algorithm for updating the working memory. This algorithm makes use of the
predicate:

(ItemMatchesNode ItemNode) - Determines if item matches node, considering type and value. If
node is of type constant, item matches if t is identical to the value of node. If node is of type variable,
item matches and the binding (variable-name item) is recorded. If the type of the node is wildcard,
item always matches.

Procedure: Discriminate-Clause

input: root-node, current-clause (clause to be added or deleted),
action (add or delete)

Output: Set of pattern-nodes

1Begin Discriminate-Clausel

1. Set current-node to be the root-node.

2. Set current-item to be the first item of current-clause and remove It from
current-clause.

3. Set set-of-matching-nodes to be all the successors of current-node that
current-item matches by applying ItemMatchesNode to current-item and each
successor.

4. Set successors to be the union of all the successors of set-of-matching-nodes.
5. If current-clause is not empty go to 2 otherwise got to 6.
6. Set set-of-matching-nodes to be all the successors of type pattern-node. Mark

all the changes (add or delete and bindings) on the record of changes of each
pattern-node. Return set-of-matching-nodes.

{End Discriminate-Clausel
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Propagate Changes

The changes are kept on each node's change record which has three fields: status change,

binding sets addition and binding sets deletions. The process of propagating the changes is done

depth-first for each pattern node that was marked as changed by the Discriminate-Clause procedure ap-

plied to a clause in DeleteList or AddList.

(UpdatePatternNode Node) - Updates the state of a pattern node. This function is called when a

change to the state of this node was recorded by Discriminate-Clause. The state of the node is de-

termined according to the changes passed down by updating the predecessor, and the changes in

the state of the current node are passed to its successors. The function returns the changes made in

the state of the current node.

(UpdateAndNode Node) - Updates the state of an and node. The changes are marked as addition or

deletion passed down from one of the predecessors. Those can be addition or deletion of bindings

or change in the status of the node if it doesn't consist variables. The change in the predecessor's

state is calculated in combination with the other predecessor and if different then the current state of

the node the state of the node is updated and the change is passed to its successors, otherwise the

function returns NIL and the propagation is stopped on this path.

(UpdateNegationNode Node) - Updates the state of an negation node. The changes are marked as

addition or deletion passed down from one of the predecessors. Those can be addition or deletion of

bindings or change in the status of the node if it doesn't consist variables. This node's changes can

be more complicated then an the changes in an and node since adding bindings to the negated pre-

decessor will cause removing bindings from this node's output which means removing bindings from

the successors. The change in the predecessor's state is calculated in combination with the other

predecessor and if different then the current state of the node the state of the node is updated and

the change is passed to its successors, otherwise the function returns NIL and the propagation is

stopped on this path.

(UpdateRuleNode Node) - This function is called to modify the state of a rule-node. It adds or deletes

the name of the production rule from the list of rules to be fired according to the state of the prede-

cessor to this node. The predecessor represents this production rule's condition. The function re-

turns the name of the node as its result.
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Procedure: Propagate-Changes

Input: Current-node, List-of-rules-to-be-fired

Output: List-of-rules-to-be-fired

(Begin Progaaate-Changesl

1. Set node-type to be the type of current-node (pattem-node, and-node,
negation-node or rule-node).

1.1. If node-type is pattem-node set changes to be the value returned from
UpdatePatternNode. Go to 2.

1.2. If node-type is and-node set changes to be the value returned from
UpdateAndNode. Go to 2.

1.3. If node-type is negation-node set changes to be the value returned from
UpdateNegationNode. Go to 2.

1.4. If node-type is rule-node set changes to be the value returned from
UpdateRuleNode. Go to 2.

2. If the state of current-node was changed (changes is not empty) set

bA he the of all, -th -succ - CuFicis-hod8. lAp-
ply Propagate-Changes to each of the nodes in set-of-nodes-to-update and
return current-node; otherwise stop and return NIL.

{End Propagate-Chanpesl
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