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Abstract

EPIC (Executive Process-Interactive Control) is a
human information-processing architecture especially
suited for modeling human multiple-task performance.
The EPIC architecture includes peripheral sensory-
motor processors surrounding a production-rule
cognitive processor, and is being used to construct
precise computational models for basic multiple-task
situations.  Some of these models are briefly illustrated
here to demonstrate how EPIC applies to multiple-task
situations and clarifies some basic properties of human
performance.  

1 Introduction

This paper is a brief report on the current status of our work
with the EPIC architecture for human information
processing, which is being developed under ONR
sponsorship.1 EPIC is a general framework, represented as
a simulation modeling environment, in which models of
human performance in specific tasks may be constructed.
The goal of the EPIC project is to develop a comprehensive
computational theory of multiple-task performance that (a)
is based on current theory and results in cognitive
psychology and human performance; (b) will support
rigorous characterization and quantitative prediction of
mental workload and performance, especially in multiple-
task situations; and (c) is useful in the practical design of
systems, training, and personnel selection.  

EPIC is similar in some ways to previous approaches to
human performance modeling such as HOS (Lane, Strieb,
Glenn, & Wherry, 1981), SAINT (Chubb, 1981) and others
(e.g. see MacMillan, Beevis, Salas, Strub, Sutton, and Van
Breda, 1989, for a survey).  It extends previous theoretical

proposals as well, such as those by Card, Moran, and
Newell (1983), Schneider and Detweiler (1987), and
Norman and Shallice (1986).  There are several key
differences with previous approaches.  First, our models are
based on a cognitive architecture, a structure of processing
mechanisms whose properties adhere to recent and detailed
empirical evidence, especially concerning multiple-task
performance, and modern computational theories of
cognition.  Second, we have adopted a rigorous theoretical
approach consisting of constructing and testing
computational models and subjecting them to detailed
quantitative comparison with data.  Constructing such
models involves a detailed analysis of the experimental
task, which is usually overlooked in conventional
psychological theorizing, but is a key advantage of the
computational model approach (see Kieras, 1990).  Third,
our computational models are generative; that is, in an
EPIC model, a simulated human with general procedural
knowledge of the task interacts with a simulated task
environment, and the model then generates the specific
pattern of activities necessary to perform specific tasks.
Thus the task analysis reflected in the model is general to a
class of tasks.  In summary, our EPIC project is both more
theoretically advanced and more empirically accurate than
most prior modeling approaches.  

Our primary focus is on multiple-task performance, in
which the human concurrently performs a set of tasks; the
tasks are independent, in that each could be meaningfully
described and conducted in isolation.  A good example of a
multiple-task situation is an airplane cockpit; for example, a
pilot may need to simultaneously pilot the aircraft and track
an enemy target.  In a multiple-task situation, the main
problem confronting the human is to execute the
independent tasks in a coordinated fashion that meets some
constraints on overall performance, such as giving one task
priority over the other.  We have focused on multiple-task
performance for two reasons: First, it is of great practical
importance, but is theoretically underdeveloped.  Second,
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the multiple-task situation stresses human capabilities very
seriously, and so the observed patterns of behavior set very
strong constraints on the human information-processing
system architecture.  Thus our analyses of even simple
multiple-task situations have resulted in detailed hypotheses
about the information-processing mechanisms that are
represented in the EPIC architecture.  

We have applied certain principles for computational
modeling of human multiple-task performance: 

• Our computational models are built in terms of a
detailed general architecture that characterizes
human perceptual, cognitive, and motor
mechanisms, and which is required to be accurate
and applicable across task domains.  

• A central role is given to cognitive strategies for
task execution, which we represent using production
systems.  

• Executive processes for coordinating multiple tasks
are treated simply as additional strategies.  

• EPIC does not assume an inherent central-
processing bottleneck.  We attempt to explain
performance decrements in multiple task situations
in terms of the strategic effects of the task
instructions and perceptual-motor constraints.  

This paper provides a brief description of the EPIC
architecture, our approach to modeling multiple task
situations, a summary of how we have applied EPIC in
previous work, and a description of the results of applying
EPIC to some dual-task situations involving simultaneous
tracking and decision-making tasks.  

2 The EPIC Architecture

EPIC was designed to explicitly couple perceptual-motor
mechanisms with a cognitive analysis of procedural skill
represented by production-system models such as CCT
(Bovair, Kieras, & Polson, 1990), ACT (Anderson, 1976),
and SOAR (Laird, Rosenbloom, & Newell, 1986).  Thus,
EPIC has a production-rule cognitive processor surrounded
by perceptual-motor peripherals; applying EPIC to a task
situation requires specifying both the production-rule
programming for the cognitive processor, and also the
relevant perceptual and motor processing parameters.  EPIC
computational models are generative in that the production
rules supply general procedural knowledge of the task, and
thus when EPIC interacts with a simulated task
environment, the model generates the sequence of serial
and parallel activities required to perform a particular task.
The model is driven by the sequence of task events external
to the human operator, such as which characters appear at
what location over time on a display screen at what time,
possibly in response to actions performed by the operator.  

Figure 1 shows the overall structure of processors and

memories in the EPIC architecture.  At this level, EPIC is
conventional in some respects.  However, there are many
important new concepts in the EPIC architecture which this
brief presentation will highlight.  

As shown in Figure 1, EPIC has a conventional flow of
information from sense organs, through perceptual
processors, to a cognitive processor (consisting of a
production rule interpreter and a working memory), and
finally to motor processors that control effector organs.
There are separate perceptual processors with distinct
processing time characteristics, and separate motor
processors for vocal, manual, and oculomotor (eye)
movements.  Also included are feedback pathways from the
motor processors, as well as tactile feedback from the
effectors, which are important in coordinating multiple
tasks.  The declarative/procedural knowledge distinction of
the "ACT-class" cognitive architectures (see Anderson,
1976) is represented in the form of separate permanent
memories for production rules and declarative information.
At this time, we do not completely specify the properties of
working memory (WM), because clarifying what types of
working memory systems are used in multiple-task
performance is one of our research goals.  For now, WM is
assumed to contain all of the temporary information tested
and manipulated by the cognitive processor's production
rules, including task goals, sequencing information, and
representations of sensory inputs.  

A single stimulus input to a perceptual processor can
produce multiple outputs to be deposited in WM at different
times.  The first output is a representation that a perceptual
event has been detected, followed later by a representation
that describes the recognized event.  For present purposes,
we assume that the mean detection time is fixed and fairly
short (e.g. 50 ms), while the recognition process takes
additional time after the detection process, and depends on
the properties of the stimulus.  For example, recognizing
letters on screen in a typical experiment might take on the
order of 150 ms after the detection time.  At present, we
have estimated these parametric recognition times from the
empirical data being modeled.  

EPIC's cognitive processor is programmed with
production rules, and so in order to model a task, we must
supply a set of production rules that specify what actions in
what situations must be performed to do the task.  We are
using the interpreter from the Parsimonious Production
System (PPS) which is especially suited to task modeling
work (Bovair, Kieras, & Polson, 1990).  One important
feature of PPS is that control information such as current
task goals is simply another type of WM item, and so can
be manipulated by rule actions.  A critical difference from
many other production-system architectures is that on each
cognitive processor cycle, any number of rules can fire and
execute their actions; this parallelism is a fundamental
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feature of PPS.  The cognitive processor accepts input only
at the beginning of each cycle, and produces output at the
end of the cycle, whose mean duration is estimated to be 50
ms.  Thus, unlike in some other information-processing
architectures, the EPIC cognitive processor is not
constrained to be doing only one thing at time.  Rather,
multiple processing threads can be represented simply as
sets of rules that happen to run simultaneously.  

Another important of EPIC involves the basic temporal
relationships of its processors.  The perceptual processors in
EPIC are "pipelines," in that an input produces an output at
a certain later time, independently of what particular time it
arrives.  However, the cognitive processor accepts input
only every 50 ms, and is constantly running, not
synchronized with external events.  This means that
perceptual processor output to the cognitive processor must
wait an average of 25 ms until it is accepted.  Thus the
temporal resolution on sensory events is limited centrally,
rather than reflecting temporal integration by the perceptual
processors.  Our proposal, along with the 50 ms cognitive
cycle time, is supported nicely by work on human
simultaneity judgments (Kristofferson, 1967).  

The EPIC motor processors are much more elaborate than
in previous models.  Certain results (e.g., McLeod, 1977)
motivate our assumptions that the motor processors operate

independently, but the hands are bottlenecked through a
single manual processor.  Thus, according to EPIC, the
hands normally cannot be controlled independently; rather
they can be operated either one at a time, or synchronized
with each other.  Past research on movement control (e.g.,
Rosenbaum, 1980) suggests that movements are specified
in terms of features, and the time to produce a movement
depends on its feature structure as well as its mechanical
properties.  We have represented this property in highly
simplified models for the motor processors.  The input to
the motor processors consist of a symbolic name for the
desired movement, or movement feature.  The processor
recodes the symbol into a set of movement features, and
then initiates the movement.  The external device will then
detect the movement after some additional mechanical
delay.  For example, using our estimates, if the desired
movement is to press a button with the right-hand index
finger, the symbolic name would be recoded into the
movement features <RIGHT, INDEX>, taking an average
of 50 ms each, followed by 50 ms for the movement
initiation, and a final 10 ms for the mechanical motion of
pressing the button.  The manual motor processor contains
mechanisms for a variety of different movement styles,
each with its own feature set and execution time.  Examples
are pressing a button under one of the fingers, pecking at a
key some distance away, pointing at an object, or plying a
joystick to position a cursor.  
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An important empirical result is that effectors can be
preprogrammed if the movement can be anticipated
(Rosenbaum, 1980).  In our model, this takes the form of
instructing the motor processor to generate the features, and
then at a later time instructing the motor processor to
initiate the movement.  As a result of the pre-generation of
the features, the resulting movement will be made sooner.
Finally, we assume that a motor processor can prepare only
one movement at a time, but this preparation can be done in
parallel with the physical execution of a previously
commanded movement.  

3 Modeling Task Performance with EPIC

3.1 Constraints in Model Construction

How we use EPIC to model task performance can be
summarized in terms of what we have to supply to
construct a model, the results produced by the model, and
which parameters are free to vary and which are fixed.  The
inputs to the EPIC modeling process are:

• A production-rule representation of the procedures
for performing the task; 

• The physical characteristics of objects in the
environment, such as their color or location; 

• A set of specific instances of the task situation, such
as the specific stimulus events and their timing; 

• Values of certain time parameters in the EPIC
architecture.  

The output of the EPIC model is the predicted times and
sequences for the actions in the selected task instances.  

The parameters and model properties that are fixed are:
• The basic structure of the EPIC architecture, such
as the internal mechanisms and connections of the
processors;

• Most processing time parameters;
• The feature structure and time parameters of the
motor processors.  

The parameters and properties that are free to vary are:
• The production rule programming for the task,
since it must represent the task procedures;

• Certain task-specific perceptual encodings and their
time requirements, such as the time to recognize the
stimulus shapes appearing on a screen in a particular
system.  These must be estimated in some way, but
are constrained to be constant over similar stimuli.  

• The specific styles of movements made by a
person.  These are often not adequately constrained
by the task, and so must be chosen on the basis of
observation or left free to vary. 

Once the EPIC model is constructed, we generate
predictions of task performance by simulating the human
interacting with the task environment in simulated real
time, in which the processors run independently and in
parallel.  We include a process that represents the task
environment, and which generates stimuli and collects the
responses and their simulated times over a large number of
trials.  To represent human variability, the processor time
parameters are varied stochastically about their mean values
with a regime that produces a coefficient of variation for
simple reaction time of about 20%, a typical empirical
value.  

3.2 Modeling Multiple-Task Performance

3.2.1 Rationale for EPIC’s basic assumptions  

The literature on multiple-task performance is extensive,
and will not be summarized here; for a review, see Gopher
and Donchin (1986).  Of course human information
processing is limited in capacity, and it has been
traditionally assumed that there is a single-channel
bottleneck (Welford, 1952).  But humans can do multiple
tasks, sometimes impressively well, and their ability to do
so depends strongly on the specific combinations of tasks
involved.  The multiple-resource theory (Wickens, 1984) is
an attempt to summarize these relationships.  They pose a
fundamental theoretical dilemma about how to reconcile the
complex patterns of people's multitasking abilities with
some notion that the overall capacity of the human system
is limited.  

In developing EPIC, our theoretical strategy is to make
some radical simplifying assumptions and then explore
their consequences through modeling.  We assume that all
capacity limitations are a result of limited structural
resources, rather than a limited cognitive processor.  Thus,
the EPIC cognitive processor can fire any number of rules
simultaneously, but since the peripheral sense organs and
effectors are structurally limited, the overall system is
sharply limited in capacity.  For example, the eyes can only
fixate on one place at a time, and the two hands are
bottlenecked through a single processor.  We also assume
that certain apparent limitations in central capacity arise
when modality-specific working memories must be used to
maintain task information, but we have not yet tested this
assumption in the EPIC framework.  Thus far, this simple
and radical set of assumptions about the nature of multiple-
task processing limitations has held up well.  

3.2.2 Multiple tasks and executive processes

Some theories of multiple-task performance postulate an
executive control process that coordinates the separate
multiple tasks (e.g. Norman & Shallice, 1986).  We do
likewise, but a key feature of our approach is that the
executive control process is just another set of production
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rules.  These rules can control other task processes by
manipulating information in WM.  For example, we assume
that each task is represented by a set of production rules
that have the task goal appearing in their conditions, and so
an executive process rule can suspend a task by removing
its governing goal from WM, and then cause it to resume
operation by reinserting the goal in WM.  Also, the
executive process can cause a task to follow a different
strategy by placing in WM an item which task rules test for,
thus enabling one set of rules, and disabling another.  In
addition, the executive process may control sensory and
motor peripherals directly, such as moving the eye fixation
from one point to another, in order to allocate these
resources between two tasks.  Thus, rather than postulating
an executive control mechanism that is somehow different
in kind than other cognitive mechanisms, EPIC has a
uniform mechanism for the control of behavior, both at the
executive level and at the detailed level of individual task
actions.  As a corollary, learning how to coordinate multiple
tasks is simply learning another (possibly difficult) skill, as
has been proposed by some recent investigators (Gopher,
1993).  

3.3 Previous Work with EPIC

3.3.1 A basic dual-task paradigm

Our first work with EPIC focused on the simplest and
most heavily studied dual-task procedure in the research
literature, the so-called Psychological Refractory Period
(PRP) procedure.  The PRPprocedure consists of two
temporally overlapping choice reaction-time tasks; the
subject is instructed to make the response to the first
stimulus before making the response to the second stimulus.
The primary measure of interest is the reaction time to the
second stimulus, which may be affected by the temporal
spacing between the two stimuli.  The basic empirical result
is that the second response is substantially delayed as the
spacing between the two stimuli decreases.  The
conventional interpretation of this effect (the PRP effect) is
that the human has a central bottleneck, and so the second
response cannot be selected or initiated until the first
response has been made.  However, the details of the effect
and how it depends on other factors such as the stimulus
and response modalities of the two tasks, make up a
complex pattern that has never been satisfactorily explained
in any detail.  

Meyer and Kieras (1995) provide an exhaustive treatment
of the PRP effect using EPIC simulations, and mathematical
analyses based on them, to account quantitatively for the
results in many published experiments.  The correct
interpretation of the PRP effect is that in order to conform
to the task instructions, subjects must adopt a strategy that
delays initiating the second response until they can ensure
that it does not occur before the first response; the
magnitude of the delay in the second response depends on

how much of the second-task processing can be overlapped
with the first task, which in turn depends on the details of
the task structure (e.g. whether eye movements are
required), the task difficulty, and the task modalities.  The
EPIC architecture captures the relevant constraints very
well; Meyer and Kieras were able to construct models that
accounted for the specific patterns of effects in quantitative
detail, and revealed the underlying structure of the
phenomena.  More details are available in Meyer and
Kieras (1995).  

3.3.2 Multimodal interface performance prediction

A second line of work consists of using EPIC to predict
performance with systems involving high-performance
multimodal tasks (Kieras, Wood, & Meyer, 1995).  The
task domain is that of telephone operators, who collect
billing numbers spoken by customers, enter them into a
computer workstation, and verify the number before
allowing the call to proceed.  The volume of this work is
such that saving a few seconds of work time per call is
worth millions of dollars annually in labor costs.  Human
operators normally overlap speaking with and listening to
the customer with pressing keys and watching for
information to appear on the screen.  The time taken to
handle the call is not simply the sum of the individual
activity times, but is a complex function of which activities
can be overlapped and to what extent.  

Prior work in this domain (Gray, John, & Atwood, 1993)
demonstrated that changes in the workstation design could
be analyzed and predicted in terms of the patterns of
perceptual, cognitive, and motor activities required to
perform specific instances of the task.  This prior work used
hand-constructed schedule charts (PERT charts) to analyze
the work flow in a fine-grain analysis of a set of videotaped
benchmark task performances.  The schedule charts were
then modified by hand to predict performance with a
somewhat different workstation design that would cause
certain activities to be performed in a different order.
Although the Gray, John, and Atwood (1993) work was
successful, and is attributed with millions of dollars in
savings, the process of constructing the models was
extremely slow and difficult.  

Kieras, Wood, and Meyer (1995) demonstrated how
EPIC models for such tasks could be constructed on an a-
priori basis, starting with a simple procedural task analysis
which was then translated in a standardized format into a
set of EPIC production rules.  Using additional videotaped
performances, the predictions of the EPIC model were
compared to actual data at the same fine-grained level.  The
predictions of task execution time were accurate within
10%.  The EPIC architecture accurately represented the
perceptual and motor constraints in the task, making it
possible to easily construct a model on an a-priori basis that
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predicts the task time accurately enough to aid in choosing
between alternative designs.  

4 Models for Tracking/Choice Dual Tasks

The main focus of this paper is on a classic dual-task
paradigm involving simultaneous tracking and choice
reaction.  The remainder of the paper will describe two
studies, one involving a simple form of this paradigm, the
other, still in progress, involving a complex form.
Developing an EPIC model for tracking brings out many
key issues about the nature of tracking; our approach has
been to represent tracking movements as a distinct motor
processor "style" in which the human has a well-learned
skill for operating the tracking control; the cognitive
processor need only supervise the process.  

4.1 A Simple Tracking/Choice Task

We have modeled some results obtained by Martin-
Emerson and Wickens (1992) which are especially
revealing about the role of eye movements and the use of
visual information during such a dual task.  Figure 2 shows
the EPIC model display of the task.  The display is not
exactly like the actual experimental display; rather we use
such displays as a debugging aid to show what the model is
doing during development.  The display shows the visual
environment of EPIC with the objects in their correct sizes
and positions; the small gray circle shows the location and
size of EPIC's fovea, currently on the choice stimulus, and
the larger gray circle marks the boundary of the parafovea,
a region of intermediate discriminative ability.  

The compensatory tracking task uses the portion of the
display in the upper box; a cursor (the cross) must be kept
centered on a target (the small circle), using a joystick
manipulated by the right hand.  Occasionally a stimulus
appears in the choice stimulus area (the solid circle below
the tracking box), which is either a left- or right-pointing
arrow (not shown to scale in the display).  The subject must
respond by pressing one of two buttons with the left hand as
soon as possible, while attempting to maintain the cursor on
the target.  

The major independent variable is the distance (in visual
angle) between the tracking target and the choice stimulus,
and a second variable is the difficulty of the tracking task.
The two dependent variables are the reaction time to the
choice task and the RMS error in the tracking task,
collected for a two-second period following the onset of the
choice stimulus.  As shown by the Observed curves in
Figure 3, choice reaction time increases with the angular
distance between the target and the choice stimulus, but is
unaffected by tracking difficulty.  The RMS error increases
somewhat with the angular separation, and to an equal
extent for both levels of tracking difficulty.  

Our models for this task assume that successful tracking
requires that the eye be kept on the tracking cursor, but that
in order to discriminate the choice stimulus, the eye must be
moved to the choice stimulus.  However, if the choice
stimulus is close enough to the eye position, parafoveal
vision will be adequate to discriminate the stimulus without
moving the eye.  Hence the two tasks often, but not always,
compete for use of the eye.  Finally, because both tasks
involve manual responses, they compete for access to the
manual motor processor.  We will illustrate how EPIC can
be applied to this task with two models.  

4.1.1 A simple lockout model

The Lockout Model uses a simple strategy, shown in
flowchart form in Figure 4, that is consistent with
traditional thinking about dual task situations, namely the
lower priority task is locked out (suspended) while the
higher priority task is executed.  The tracking task rules
simply make a motor movement whenever the cursor is
adequately far off the target.  The executive process
normally allocates control of the eye to the tracking task,
where a production rule ensures that the eye makes a
movement to the cursor anytime it is too far off.  The
oculomotor processor also can autonomously make small
adjustments using perceptual information about object
movements.  When the choice stimulus appears, the
executive process suspends the tracking task, activates the
choice task, and then allocates control of the eye to the
choice task, moving it to the stimulus if it is too far away to
be discriminated.  When the choice response has been
initiated, the executive resumes the tracking task and
returns control of the eye to the tracking task.  In this way,
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using what we term lockout scheduling, the executive
process allows only one task to be done at a time, ensuring
that the choice task has priority over the tracking task, and
that the eye and the manual motor processor are only used
for one task at a time.  

Unfortunately, this simple strategy does not fit all aspects
of the data.  Figure 3 shows the predicted and observed
values for the choice reaction time and the tracking error.
Using a best estimate from the data of the perceptual
recognition time for the choice stimulus, we can fit the
choice reaction time data fairly well.  There is no effect of
tracking task difficulty since the choice task is given
priority over tracking.  The first few points are fairly flat,
due to the parafoveal recognition of the choice stimulus.
The upward slope of the curves at larger separations reflects
the time required to move the eye.  The fit of the simulated
tracking data is extremely poor, however.  The overall
magnitude of tracking error is seriously over predicted, as is
the effect of tracking difficulty and the effect of visual

separation.  

The Lockout Model cannot be made to fit the tracking
data better by adjusting the relevant parameter values; it is
already using the minimum plausible time estimates for all
of the perceptual and motor parameters involved.  Rather,
note that the RMS error is measured for a brief (2 s) period
of time starting with the onset of the choice stimulus,
meaning that if tracking is suspended for too long during
this period, the effect will be substantial.  The Lockout
Model suspends the tracking task for such a long time that
considerable tracking error accumulates; it is simply too
inefficient. 

4.1.2 An interleaved model

We constructed a second model, the Interleaved Model, in
which the executive overlaps the processing on the two
tasks as much as possible; this strategy is shown in Figure
5.  When the choice stimulus appears, the executive moves
the eye to the choice stimulus, and then immediately begins
to move it back, relying on the "pipeline" property of the
visual system to acquire the stimulus and continue to
process it, even after the eye has returned to the tracking
cursor.  The tracking task is suspended only while the eye is
away looking at the stimulus arrow for the choice task.  The
model uses the same approach as in our PRP models for
allocating control of the manual motor processor.  When the
choice task rules have chosen the response, it signals the
executive, which again suspends the tracking task, and
allows the choice task to command the manual motor
processor, and then resumes the tracking task right away.
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Thus, the same task priorities are honored, but the tracking
task is interrupted as little as possible.  The predictions
from this model are shown in Figure 6.  The choice reaction
times are again well fit, but now the tracking task
predictions are extremely close as well.  Since the
interleaved executive allocates the eye and the manual
motor processor to the tracking task for the maximum
amount of time, the tracking task rules can squeeze in a few
movements while the choice task is underway, resulting in
substantially less tracking error than the Lockout Model.  

4.1.3 Conclusions

Two important substantive conclusions stem from this
modeling work.  First, the control of the eye is critical in
dual task paradigms.  Second, subjects can and apparently
do use subtle strategies for coordinating dual tasks in
surprisingly efficient ways.  

Another general conclusion concerns a common
misunderstanding about computational models.  They do
not in fact have so many "degrees of freedom" that they can
be made to fit any data at any time.  As in other efforts such
as ACT and SOAR, working within the fixed EPIC
architecture sets powerful constraints.  Given the basic
lockout strategy, there were no parameter values or specific
strategy details that would allow us to fit the data as a
whole.  The only way EPIC could be applied to fit the data
was by assuming a fundamentally different strategy.  Of
course, further empirical work could be done (e.g. eye
tracking) to determine whether the Interleaved Model
strategy in fact describes the use of the eye correctly.  Thus,

a general conclusion (also observed in our earlier work) is
that the exercise of seeking quantitatively accurate accounts
of data within a fixed architecture is extremely informative,
both about the accuracy of the architecture theory and also
the structure and requirements of the task.  

4.2 A Complex Tracking/Decision-Making Task

The modeling work on the Martin-Emerson and Wickens
task laid the foundations for our current work on a more
complex dual tracking/choice task.  This task was
developed by Ballas, Heitmeyer, and Perez (1992a, 1992b)
to resemble a class of tasks performed in combat aircraft in
which analyzing the tactical situation is partially automated
by an on-board computer.  To help the explanation, Figure 7
shows our EPIC model display for this task.  The right hand
box contains a pursuit tracking task in which the cursor
(cross) must be kept on the target (small box); the eye is
shown currently on the cursor.  Average tracking error data
were collected during various phases of the experiment.
The left-hand box contains the choice task, a tactical
decision task in which objects (or "tracks") must be
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classified as hostile or neutral based on their behavior.
These objects represent fighter aircraft, cargo airplanes, and
SAM sites that move down the display as the subject's
aircraft travels.  

In the actual Ballas et al. (1992a) display, each type of
object was coded by an icon; for simplicity, in the EPIC
display they are represented instead by a code letter.  A
track number identifies each object.  Objects appear near
the top of the display, and then move down the display.
After some time, the on-board computer would attempt to
designate the objects, indicating the outcome by changing
the object color from black to red, blue, or amber, which the
EPIC display shows with a three-character abbreviation.  If
the object became red (hostile) or blue (neutral) the subject
had to simply confirm the computer's classification; the
response was typing on a keypad a key for the
hostile/neutral designation followed by the key for the track
number.  If the object became amber, the subject had to
classify the object based on a set of rules for the object's
behavior, and then type the hostility designation and track
number.  After the response, the object changed color to
white, and then disappeared from the display some time
later.  The basic dependent variable is the reaction time to
the objects, measured from when the object changed color
to when the first of the two response keystrokes were made.  

Ballas et al. varied two major aspects of this task.  One
set of manipulations concerned the format of the tactical
display and the response.  The above description is for one
of the four combinations; the other combinations consisted
of using a tabular display instead of the graphical radar-like
display, and a touchscreen response procedure instead of
the keypad.  At this time we have modeled only the one
interface combination described above.  

The second manipulation concerns the effects of adaptive
automation.  From time to time during the task, the tracking

task would become difficult, and the on-board computer
would take over the tactical task, signaling when it did so.
The computer would then generate the correct responses to
each object at the appropriate time, with the color changes
showing on the display as in the manual version of the task.
Later, the tracking would become easy again, and the
computer would signal and then return the tactical task to
the subject.  Ballas et al. observed an automation deficit
effect, in which for a time after resuming the tactical task,
subjects produced longer response times in the tactical task
compared to their normal steady-state manual performance.
This effect represents some of the serious concerns about
possible negative effects of automation in combat
situations; if the automation fails, the operator can lack
situation awareness, and it might take a long time to "catch
up."

4.2.1 A preliminary model

At the time of this writing, our EPIC models for the
Ballas task are in a preliminary stage; we have not yet
begun to produce quantitatively accurate fits, but have
begun to capture the qualitative phenomena.  This
description of our results is subject to revision in later
presentations of this work.  

We have estimated the parameters for the basic perceptual
encoding operations required in the tactical task, namely
recoding the blue and red colors to the appropriate key, and
recognizing the hostility of behaviors of different kinds of
objects, which takes considerably longer (more than a
second).  We have assumed that assessing the hostility of an
object requires that it be fixated, but that an object's color
would be available parafoveally, and color changes, like
object onsets and offsets, would be visible in peripheral
vision.  

Our current preliminary model is an initial simple one,
structured much like the lockout model described above for
the Martin-Emerson and Wickens task; we may need a
more complex interleaved model to fully fit the data.  When
the tactical task is being done by the subject (as opposed to
the on-board computer), the executive process allows the
tracking task to run until it is time to work on the tactical
decision task.  Thus it ignores the simple appearance of an
object and instead waits for a detection of a color change in
peripheral vision.  The executive then suspends the tracking
task, and allocates the eye to the tactical task.  The eye is
moved to the changed object, and the appropriate response
made when the perceptual information (color coding or
hostility behavior) becomes available.  If additional objects
have changed color in the meantime, the tactical task rules
choose one at random, move the eye to it, and process it.
When no more objects remain to be processed, the tracking
task terminates, and the executive then returns control of
the eye to the tracking task and restarts it.  We expect to be
able to fit the tactical reaction time data and the tracking
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Figure 7.  EPIC model display for the Ballas et al. task.  



task performance well, since this task is essentially just a
complicated version of the Martin-Emerson and Wickens
task.  At this point, our preliminary model reproduces the
qualitative relationships associated with single and dual-
task reaction times and average tracking errors.  

4.2.2 A preliminary explanation of the automation
deficit effect

More interesting though, is our current hypothesis for the
source of the automation deficit effect.  We assume that
when the tactical task is automated, the subject simply
ignores the color changes appearing in the tactical display
and does not bother to store any information about the state
of the display in working memory.  When it is time to
resume the tactical task, multiple objects typically need to
be processed, and since there is no record of which have
changed colors or the order in which they appeared, the task
strategy simply picks the first one to inspect at random.
After moving the eye to it and waiting for the color to
become available, the strategy processes the object as usual
if it is red, blue, or amber.  However, if it is white or black,
it cannot be processed, and so another object is picked at
random.  When all candidate objects have been dealt with,
tracking is resumed, and future object changes are
processed as they appear.  

The automation deficit results from the fact that when the
tactical task is being performed normally, objects are
usually processed in the order that they change color,
keeping the average reaction time to a minimum.  In
contrast, when the tactical task is resumed, multiple objects
must be inspected, and no information has been kept on the
order in which they have appeared or changed color
(otherwise, the automation is of little value!).  Thus the
objects are inspected in random order, meaning that objects
that changed first will have to wait longer on the average to
be inspected than if they were processed in order.  

Figure 8 illustrates what can happen during tactical task
resumption.  Although Track 1 (a blue plane) was the
earliest changing object, the strategy happened to pick
Track 2 (a red fighter) to process first instead.  After Track
2 is processed, the strategy will choose one of the
remaining three objects to inspect next.  If Track 4 is
chosen, time would be wasted since a black target should
not be processed yet; if Track 3 (an amber plane) is picked,
the other tracks would go unprocessed for a long time while
the model waits for the hostility status of Track 3 to become
apparent.  Thus it may be a long time before Track 1 gets
processed.  As the model performs the task, it will catch up
after some time, and objects will again be processed mostly
in the order that they change.  Thus, relative to steady-state
performance, performance on the tactical task is depressed
for some time following its resumption; temporarily,
objects may take longer than normal to get processed.  

4.2.3 Conclusions and current plans

At the time of this writing, our preliminary model for
Ballas et al. does not yet produce the quantitatively accurate
times for the single-task processing, and so quantitative
predictions of the automation deficit effect are not yet
definite.  However, using the Ballas et al. measure, our
preliminary model produces an automation deficit of about
500 ms with two of the actual task scenarios, which
compares favorably to the value of about 800 ms observed
in the same interface condition over all of the task
scenarios.  Thus our current hypothesis about the cause of
the automation deficit appears plausible and worth pursuing
further.  

Our current plan is to develop a model that accounts
quantitatively for performance in all of the Ballas et al.
(1992a) experiment conditions, including the effects of
different display and response formats, as well as the
automation deficit, and the interactions of all of the factors.  

If our current explanation for the automation deficit is
borne out by our more complete and accurate models, there
may be some important implications for display and task
design.  For example, according to this hypothesis,
resuming the tactical task could be done more efficiently if
it is possible to easily detect the highest-priority object on
the display.  That is, suppose the first-changed object
currently on the display was coded by making it blink,
which would be salient in peripheral vision.  The subject
could simply look at the blinking object in order to ensure
that the objects were processed in priority order.
Alternatively, the automated version of the task could use a
different, less salient, way of representing its activity, so
that the subject could still profitably monitor for the same
perceptual events that are important in the manual version.  

Of course, how these issues show up in actual cockpit
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Figure 8.  Automation deficit effect: After resuming the
tactical task, the model inspects the objects out of order.  



displays must be considered, but we are optimistic that
EPIC will provide a framework for analyzing interface
designs for these high-performance multiple-task situations.  

5 General Conclusions

At this point, EPIC is definitely a research system, and
certainly is not ready for routine use by system or interface
designers.  However, there is a technology transfer
precedent: earlier work with the CCT production rule
models for HCI (Bovair et al., 1990), led to a practical
interface design technique (see John & Kieras, 1994).
Likewise, as the EPIC architecture stabilizes and experience
is gained in applying it to human-system analysis problems,
we should be able to devise a simplified approach that will
enable designers to apply EPIC to develop improved
human-system interfaces.  

Our experience with the EPIC architecture also suggests
some meta-level conclusions about the role of cognitive
modeling in the science and engineering fields of human
performance and human-system interaction: 

• As mentioned above, powerful constraints are
imposed by quantitatively fitting fixed-architecture
models to detailed performance data.  Thus,
working with computational models is not
necessarily an arbitrary exercise.  

• Computational models that are based on human
information-processing can usefully predict details
of human performance in system design and
evaluation situations.  

• Developing and applying a cognitive model to task
situations relevant to real design problems is a
demanding test of cognitive theory; if the theory
successfully represents important properties of
human abilities, it should in fact be useful in
practical settings.  

In short, a comprehensive, detailed, and quantitative
theory of human cognition and performance is the best
basis for applied cognitive psychology.  Rather than relying
only on general psychological principles, or brute-force
application of experimental methodology, system design
can be best informed by using a theory that can address
phenomena at the same level of detail that design decisions
require.  It really is true that "Nothing is more useful than a
good theory!"

Acknowledgement

Thanks are due to James Ballas of NRL for his generous
assistance in making his task software available and
supplying new analyses of his data.  

References

Anderson, J. R. (1976). Language, memory, and thought.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The
acquisition and performance of text editing skill: A
cognitive complexity analysis. Human-Computer
Interaction, 5, 1-48.

Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992a).
Direct manipulation and intermittent automation in
advanced cockpits. Technical Report NRL/FR/5534--92-
9375. Naval Research Laboratory, Washington, D. C.

Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992b).
Evaluating two aspects of direct manipulation in
advanced cockpits. In Bauersfeld, P., Bennett, J., and
Lynch, G., CHI'92 Conference Proceedings: ACM
Conference on Human Factors in Computing Systems,
Monterey, May 3-7, 1992.

Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Chubb, G. P. (1981). SAINT, a digital simulation language
for the study of manned systems. In J. Moraal & K. F.
Kraas (Eds.), Manned system design. (pp. 153-179).
New York: Plenum.

Gopher, D., & Donchin, E. (1986). Workload: An
examination of the concept. In K.R. Boff et al. (Eds.),
Handbook of perception and performance, Vol. II (pp.
41.1-41.49). New York: Wiley.

Gopher, D. (1993). Attentional control: Acquisition and
execution of attentional strategies. In D. E. Meyer & S.
Kornblum (Eds.), Attention and performance XIV.
Cambridge, MA: M. I. T. Press.

Gray, W. D., John, B. E., & Atwood, M. E. (1993) Project
Ernestine: A validation of GOMS for prediction and
explanation of real-world task performance. Human-
Computer Interaction, 8, 3, pp. 237-209. 

John, B. E. & Kieras, D. E. (1994). The GOMS family of
analysis techniques: Tools for design and evaluation.
Carnegie Mellon University School of Computer
Science Technical Report No. CMU-CS-94-181. Also
appears as the Human-Computer Interaction Institute
Technical Report No. CMU-HCII-94-106.

Kieras, D. E. (1990). The role of cognitive simulation
models in the development of advanced training and
testing systems. In N. Frederiksen, R. Glaser, A.
Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of
skill and knowledge acquisition. Hillsdale, NJ: Erlbaum.

Kieras, D., Wood, S., & Meyer, D. (1995). Predictive
Engineering Models Using the EPIC Architecture for a
High-Performance Task. To appear in CHI'95
Proceedings of the ACM Conference on Human Factors
in Computing, Denver, May 7-11, 1995.

Kristofferson, A. B. (1967). Attention and psychophysical
time. In A. F. Sanders (Ed.), Attention and performance
(pp. 93-100). Amsterdam: North-Holland Publishing Co.

11



Laird, J., Rosenbloom, P, & Newell, A. (1986) Universal
subgoaling and chunking. Kluwer Academic Publishers:
Boston.

Lane, N. E., Strieb, M. I., Glenn, F. A., & Wherry, R. J.
(1981). The human operator simulator: An overview. In
J. Moraal & K. F. Kraas (Eds.), Manned system design
(pp. 121-152). New York: Plenum. 

Martin-Emerson, R., & Wickens, C. D.  (1992). The
vertical visual field and implications for the head-up
display. Proceedings of the 36th Annual Symposium of
the Human Factors Society. Santa Monica, CA: Human
Factors Society.

McLeod, P. D. (1977). A dual task response modality effect:
Support for multiprocessor models of attention.
Quarterly Journal of Experimental Psychology, 29, 651-
668. 

McMillan, G. R., Beevis, D., Salas, E., Strub, M. H.,
Sutton, R., & Van Breda, L. Applications of human
performance models to system design. New York:
Plenum Press, 1989.

Meyer, D. E., & Kieras, D. E. (1995). AComputational
Theory of Human Multiple-Task Performance: The
EPIC Information-Processing Architecture and Strategic
Response-Deferment Model. Psychological Review,
accepted for publication.

Norman, D. A., & Shallice, T. (1986). Attention to action:
Willed and automatic control of behavior. In R. J.
Davidson, G. E. Schwartz & Shapiro (Eds.),
Consciousness and self-regulation, Vol. 4. New York:
Plenum Press. 

Rosenbaum, D. A. (1980). Human movement initiation:
Specification of arm, direction, and extent. Journal of
Experimental Psychology: General, 109, 475-495. 

Schneider,  W. ,  &  Detweiler,  M.  (1987). A
connectionist/control architecture for working memory.
In G. H. Bower (Ed. ), The psychology of learning and
motivation (Vol. 21, pp. 53-119). Orlando, FL:
Academic Press.

Welford, A. T. (1952). The "psychological refractory
period" and the timing of high speed performance - A
review and a theory. British Journal of Psychology,43,
2-19.

Wickens, C. D.  (1984). Engineering psychology and
human performance. Columbus, OH: Charles F. Merrill.

12


