In the Proceedings of the 1995 International Symposium on Command and Control Reseaethaalbdy, National
Defense University, Washington D.C., June, 1995.

Predicting Human Performance in Dual-Task Tracking and Decision Making
with Computational Models using the EPIC Architecture

David E. Kieras David E. Meyer
Artificial Intelligence Laboratory Department of Psychology
Electrical Engineering & Computer Science University of Michigan
Department 525 East University
University of Michigan Ann Arbor, Michigan 48109-1109
1101 Beal Avenue (313) 763-1477
Ann Arbor, Michigan 48109-2110 demeyer@umich.edu

(313) 763-6739
kieras@eecs.umich.edu

Abstract proposals as well, such as those by Card, Moran, and
_ _ _ Newell (1983), Schneideand Detweiler (1987), and
EPIC (Executive Process-Interactive Control) is a Norman andShallice (1986). Therare several key

human information-processing architecture especially  differences with previous approaches. First, our models are
suited for modeling human multiple-task performance.  pased on a cognitive architecture, a structuneradessing

The EPIC architecture includes peripheral sensory- mechanisms whose properties adhere to recendetaided
moto.r.processors surrour)dmg'aproduct|on-rule empirical evidence, especially concernimyiltiple-task
cognitive processor, and is being used to construct performance,and modern computational theories of

precise computational models for basic multiple-task  cognition. Second, we have adopted a rigotbesretical
situations. Some of these models are briefly illustrated approach consisting of constructing and testing
here to demonstrate how EPIC applies to multiple-task  computational modeland subjectingthem to detailed
situations and clarifies some basic properties of human quantitative comparisowith data. Constructingsuch
performance. models involves a detailed analysis of tbeperimental
task, which is usuallyoverlooked in conventional
) psychological theorizingyut is a key advantage of the
1 Introduction computational model approach (see Kieras, 1990)ird,
This paper is a brief report on the current status of our Wor@ur computanona}l modelsre genera_tlve; thats, in an
: i : : PIC model, a simulated human with gengmadcedural
with the EPIC architecturefor human information . . :
knowledge ofthe taskinteracts with a simulatethsk

processm_g,whmh 1S being developedunder ONR environmentand the model then generates tpecific
sponsorship. EPIC is a general framework, represented as L .

) . ; ) . . pattern of activities necessary to perform speddisks.
a simulation modeling environment, in which models of

; - Thus the task analysis reflected in the model is general to a
human performance in specific tasks maycbaestructed. L
class of tasks. Isummary,our EPIC project is botmore

The goal of the EPIC projectis to develop a Comprehenswﬁqeoretically advanced and more empirically accuttae
computational theory of multiple-task performance that (a)most orior modeling approaches

is based on current theomnd results in cognitive
psychologyand humanperformance;(b) will support
rigorous characterizatioand quantitative prediction of
mental workload and performance, especiallynuitiple-
task situations; and (c) is useful in the practical design o
systems, training, and personnel selection.

Our primary focus is omultiple-task performance, in
which the human concurrently performs a set of tasks; the
}asks are independent, in that each coulanganingfully
described and conducted in isolation. A good example of a
multiple-task situation is an airplane cockpit; for example, a
(g)ilot may need to simultaneously pilot the aircraft and track

EPIC is similar in some ways to previous approachestan enemy target. In a multiple-task situatitihe main

human performance modeling such as HOS (L&eeb, problem confrontingghe human is toexecute the

Glenn, & Wherry, 1981), SAINT (Chubb, 198d)dothers independent tasks in a coordinated fashion that rseate

(e.g. see MacMillan, Beevis, Salas, Strub, Sutton, and Van . o
Breda, 1989, for a survey). It extends previ retical constraints on overall performance, such as givingtasie

priority over theother. Wehave focused omultiple-task
' This work was supported by the Office of NaRdsearch  performance for two reasons: First, it is of grpedctical

Cognitive Sciences Program under grant NO0014-9P73-fo the  importance, but is theoretically underdevelop&kcond,
authors.




memories in the EPIC architecture. At this level, EPIC is
conventional in some respectsiowever,there aremany
strong constraints othe humaninformation-processing important new concepts in the EPIC architecture which this
system architecture. Thusur analyses of evesimple brief presentation will highlight.

multiple-task situations have resulted in detailed hypotheses
about theinformation-processingnechanismghat are

the multiple-task situation stresses human capabiliteg
seriously,and so the observed patterns of behaviovest

As shown in Figure 1, EPIC has a conventional flow of

represented in the EPIC architecture.

We have applied certain principlésr computational

modeling of human multiple-task performance:

» Our computational models are built in terms of a
detailed general architecture that characterizes
human perceptual, cognitive, and motor
mechanisms, and which is required to be accurate
and applicable across task domains.

 Acentral role is given to cognitive strategies for
task execution, which we represent using production
systems.

» Executive processes for coordinating multiple tasks
are treated simply as additional strategies.

* EPIC does not assume an inherent central-
processing bottleneck. We attempt to explain
performance decrements in multiple task situations
in terms of the strategic effects of the task
instructions and perceptual-motor constraints.

This paper provides a briefescription ofthe EPIC
architectureour approach to modeling multipleask

information from senseorgans, throughperceptual
processors, to a cognitive processor (consisting of a
production rule interpreteand a working memory), and
finally to motor processors that control effectngans.
There areseparate perceptual processwish distinct
processingtime characteristicsand separatemotor
processorsfor vocal, manual,and oculomotor (eye)
movements. Also included are feedback pathways from the
motor processors, awell as tactile feedback from the
effectors, which arémportant in coordinatingnultiple
tasks. The declarative/procedural knowledge distinction of
the "ACT-class" cognitive architecturgsee Anderson,
1976) is represented ithe form of separatpermanent
memories for production rules and declaratifermation.

At this time, we do not completely specify the properties of
working memory (WM), because clarifying what types of
working memory systemsre used inmultiple-task
performance is one of our research goals. For now, WM is
assumed to contain all of the temporary informatested
and manipulated by the cognitive processprtsduction
rules, including task goals, sequencing information, and
representations of sensory inputs.

situations, a summary of how we have applied EPIC in

previous work, and a description of the resultspplying

EPIC to some dual-task situations involvisighultaneous

tracking and decision-making tasks.

2 The EPIC Architecture

EPIC was designed to explicitly coupperceptual-motor

mechanisms with a cognitive analysis of procedskél

represented by production-systemodels such as CCT

(Bovair, Kieras, & Polson, 1990), ACT (Andersatf76),
and SOAR (Laird, Rosenbloom, & Newell, 1986)hus,

EPIC has a production-rule cognitive processorounded

by perceptual-motor peripherals; applying EPIC ttask

situation requires specifyinpoth the production-rule
programmingfor the cognitive processor,and also the

A single stimulus input to a perceptual processor can
produce multiple outputs to be deposited in WM at different
times. The first output is a representation tha¢m@eptual
event has been detected, followed later bgpaesentation
that describes the recognized event. For prgsepbses,
we assume that the mean detection time is fixedfairy
short (e.g. 50 ms), while theecognition procestakes
additional time after the detection process, and depends on
the properties of the stimulus. For exampégognizing
letters on screen in a typical experiment might take on the
order of 150 ms after the detection time. At present, we
have estimated these parametric recognition times from the
empirical data being modeled.

EPIC's cognitive processor iprogrammedwith

relevant perceptual and motor processing parameters. EP'[S:roduction rules, and so in order to model a taskmuet

computational models are generative in thatgreuction

supply a set of production rules that specify what actions in

rules supply general procedural knowledge of the task, angat situations must be performed to do the task. We are

thus when EPICinteracts with a simulated task
environmentthe model generates the sequencesafal
and parallel activities required to perform a partictdak.

using theinterpreterfrom the Parsimonioud”roduction
System (PPS) which is especially suited to tasideling
work (Bovair, Kieras, & Polson, 1990). Onienportant

The model is driven by the sequence of task events externgl,yre of PPS s that control information suchcasrent
to the humaroperator,such as which characters appear at;,qi goals is simply another type of WM item, and so can

what location over time on a display screen at wtmag,

possibly in response to actions performed by the operator.

be manipulated by rule actions. A critical differefficen
many other production-system architectures is thagawh
cognitive processor cycle, any number of rules can fire and

Figure 1 shows the overall structure of processors andyacyte their actions; this parallelism isfundamental
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Figure 1. Overall structure of the EPIC architecture showing information flow paths as solid lines, mechanical control or
connections as dotted lines. The processors run independently and in parallel; task performance is simulated by having the
EPIC model interact with a simulated task environment.

feature of PPS. The cognitive processor accepts oyt  independently,but the hands arbottlenecked through a
at the beginning of each cycle, and produces output at theingle manualprocessor. Thus, according to EPIC, the
end of the cycle, whose mean duration is estimated to be 3fands normally cannot be controlled independerdkjier
ms. Thus, unlike in some oth@rformation-processing they can be operated either one at a timesyachronized
architecturesthe EPIC cognitive processor is not with eachother. Past research on movement con{eg.,
constrained to be doing only one thing at tinlRRather, = Rosenbaum, 1980) suggests that movementspaeified
multiple processing threads can be represented simply as terms of features, and the time to produceavement
sets of rules that happen to run simultaneously. depends on its feature structure as well asngshanical
properties. We have represented this properthighly
Another important of EPIC involves the basgmporal  simplified models for the motor processors. The input to
relationships of its processors. The perceptual processors the motor processors consist of a symbolic name for the
EPIC are "pipelines,"in that an input produces an output alesired movement, or movement feature. Pphecessor
a certain later time, independently of what particular time itrecodes the symbol into a set of movement features, and
arrives. However,the cognitive processor accefngut then initiates the movement. The external devicetivdh
only every 50 ms, and isonstantly running, not detect the movement after soradditionalmechanical
synchronizedwith external events. This meanbkat delay. For example, using our estimates, if tiesired
perceptual processor output to the cognitive processgst  movement is to press a button with the right-heugx
wait an average of 25 ms until it is accepted. Thus thdinger, the symbolic name would be recoded into the
temporal resolution on sensory events is limitedtrally, = movement featuresRIGHT, INDEX>, taking anaverage
rather than reflecting temporal integration by the perceptuabf 50 ms each, followed by 50 ms for theovement
processors. Our proposal, along with the 50amgnitive  initiation, and a final 10 ms for the mechanical motion of
cycle time, is supported nicely bwork on human pressing the button. The manual motor processntains
simultaneity judgments (Kristofferson, 1967). mechanismgor a variety of diferent movemerstyles,
each with its own feature setand executiontime. Examples
The EPIC motor processors are much more elaborate thare pressing a button under one of the fingers, pecking at a
in previous models. Certain results (e.g., McLet®if7)  key some distancaway, pointing at an object, or plying a
motivate our assumptions that the motor processpesate  joystick to position a cursor.



Once the EPIC model igonstructed, wegenerate
An important empirical result is that effectors can bepredictions of task performance by simulating thenan
preprogrammed ifthe movementcan be anticipated interacting withthe taskenvironment in simulatedeal
(Rosenbaum, 1980). In our model, this takes the form ofime, in which the processors rindependentlyand in
instructing the motor processor to generate the features, apdrallel. We include a process that representddkk
then at a later time instructinje motorprocessor to  environment, and which generates stimuli and collects the
initiate the movement. As a result of the pre-generation ofesponses and their simulated times over a large number of
the features, the resulting movement will be msalgner.  trials. To represent humasriability, the processaime
Finally, we assume that a motor processam preparenly parameters are varied stochastically about their mean values
one movement at a time, but this preparation can be done inith a regime that producescaeficient of variation for
parallel with the physical execution of apreviously  simple reaction time of about 20%, a typieahpirical
commanded movement. value.

3 Modeling Task Performance with EPIC 3.2 Modeling Multiple-Task Performance

3.2.1 Rationale for EPIC’s basic assumptions

The literature on multiple-task performanceidensive,
How we use EPIC to model taglerformancecan be  and will not be summarized here; foreview, seeGopher
summarized in terms ofwhat we have to supply t0 snd Donchin (1986). Of course humamformation

construct a model, the results produced by the model, angkocessing is limited incapacity, and it has been
which parameters are free to vary and which are fixed. Th@raditionally assumed that there is aingle-channel

3.1 Constraints in Model Construction

inputs to the EPIC modeling process are: bottleneck (Welford, 1952). But humans canrdoltiple

* A production-rule representation of the procedures tasks, sometimes impressively well, and their ability to do
for performing the task; so depends strongly on the specific combinationmsis

* The physical characteristics of objects in the involved. The multiple-resource theory (Wickens, 1984) is
environment, such as their color or location; an attempt to summarize these relationships. They pose a

* A set of specific instances of the task situation, such  fyndamental theoretical dilemma about how to reconcile the
as the specific stimulus events and their timing; complex patterns of people's multitasking abilitveth

* Values of certain time parameters in the EPIC some notion that the overall capacity of the humsysiem
architecture. is limited.

sequences for the actions in the selected task instances. gome radicakimplifying assumptionsind thenexplore

) ] their consequences through modeling. We assume that all
The parameters and model properties that are fixed are: capacity limitationsare a result of limitedstructural

* The basic structure of the EPIC architecture, such resources, rather than a limited cognitiwecessor. Thus,
as the internal mechanisms and connections of the the EPIC cognitive processor can fire any numbeutes
processors, simultaneouslybut since the peripheral sense organs and

* Most processing time parameters; effectors arestructurally limited,the overall system is

* The feature structure and time parameters of the sharply limited in capacity. For example, the eyes can only
motor processors. fixate on one place at a time, and the two hands are

bottlenecked through a singbeocessor. Welsoassume
The parameters and properties that are free to vary are: that certain apparent limitations in central capaaitge
* The production rule programming for the task, when modality-specific working memories must be used to
since it must represent the task procedures; maintain task information, but we have not yet tegtesl
* Certain task-specific perceptual encodings and their assumption in the EPIC framework. Thus far, Hiisple
time requirements, such as the time to recognize the  n radical set of assumptions about the natuneuttiple-

stimulus shapes appearing on a screen in a particular {55k processing limitations has held up well.
system. These must be estimated in some way, but

are constrained to be constant over similar stimuli.

« The specific styles of movements made by a 3.2.2 Multiple tasks and executive processes
person. These are often not adequately constrained Some theories of multiple-task performance postulate an
by the task, and so must be chosen on the basis of  executive control process thabordinatesthe separate
observation or left free to vary. multiple tasks (e.g. Norman & Shallice, 1986). We do

likewise, but a key feature of our approach is that the
executive control process is just another sgtrofiuction



rules. These rules can control other task processes byw much of the second-task processing canvaelapped
manipulating information in WM. For example, we assumewith the first task, which in turn depends on the details of
that each task is represented by a set of produaties  the taskstructure (e.g. whetheeye movements are
that have the task goal appearing in their conditions, and sequired), the task ditulty, and the task modalities. The
an executive process rule can suspend a tagkrngving  EPIC architecture capturabe relevantconstraintsrery

its governing goal from WM, and then cause irédsume  well; Meyer and Kieras were able to construct motes
operation by reinsertinthe goal in WM. Also, the accounted for the specific patterns of effectguantitative
executive process can cause a task to follow terdiit ~ detail, and revealedthe underlying structure of the
strategy by placing in WM an item which task rules test for,phenomena. More detailre available in Meyer and
thus enabling one set of rules, and disablngther. In  Kieras (1995).

addition, the executive process may control sensory and

motor peripheralglirectly, such as moving the eyixation ) , .

from one point toanother, inorder to allocatdhese 3.3.2 Multimodal interface performance prediction
resources between two tasks. Thus, rather ploastulating A second line of work consists of using EPICpredict

an executive control mechanism that is somehofergiit ~ performancewith systemsinvolving high-performance

in kind than other cognitivenechanismsEPIC has a multimodal tasks (Kieras, Wood, &8eyer, 1995). The
uniform mechanism for the control béhaviorpoth at the task domain is that of telephone operators, wbltect
executive level and at the detailed level of individaak  billing numbers spoken by customers, enter them into a
actions. As a corollary, learning how to coordinate multiplecomputer workstationand verify the numbebefore
tasks is simply learning another (possibly difficult) skill, as allowing the call to proceed. The volume of this work is
has been proposed by some recent investigg@&opher, such that saving a few seconds of work time per call is

1993). worth millions of dollars annually in labor costdduman
operators normally overlap speaking with and listening to

3.3 Previous Work with EPIC the customerwith pressingkeys and watching for
information to appear on the screen. The time taken to

3.3.1 A basic dual-task paradigm handle the call is not simply the sum of tindividual

Our first work with EPIC focused on the simplest andactivity times, but is a complex function of whiattivities
most heavily studied dual-task procedure in thgearch  can be overlapped and to what extent.
literature,the so-calledPsychological Refractoryeriod
(PRP) procedure.The PRPprocedure consists of two  Prior workin this domain (Gray, John, & Atwood, 1993)
temporally overlapping choiceeaction-timetasks; the demonstrated that changes in the workstation de=igtd
subject is instructed to makihe response to thfirst be analyzed and predicted in terms of the patterns of
stimulus before making the response to the second stimulugerceptual, cognitiveand motoractivities required to
The primary measure of interest is the reaction time to th@erform specific instances of the task. This prior work used
second stimulus, which may be affected by témaporal  hand-constructed schedule charts (PERT chart)adyze
spacing between the two stimuli. The basic empirical resulthe work flow in a fine-grain analysis of a set of videotaped
is that the second response is substantially delayed as thenchmark task performances. The schedule chasts
spacing betweerthe two stimuli decreases. The then modified by hand to predigierformancewith a
conventional interpretation of this effect (the PRP effect) issomewhat different workstation design that wouoédise
that the human has a central bottleneck, and seeitend  certain activities to be performed in a differemter.
response cannot be selected or initiated whe first  Although theGray, John,and Atwood (1993) work was
response has been maddowever,the details of the &fct successfuland is attributed with millions of dollars in
and how it depends on other factors such asstineulus ~ savings,the process ofconstructingthe models was
and responsenodalities ofthe two tasks, make up a extremely slow and difficult.
complex pattern that has never been satisfactorily explained
in any detail. Kieras, Wood,and Meyer (1995)demonstrated how
EPIC models for such tasks could be constructed on an a-
Meyer and Kieras (1995) provide an exhaustive treatmenpriori basis, starting with a simple procedural tasialysis
of the PRP effect using EPIC simulations, and mathematicalvhich was then translated in a standardized format into a
analyses based on them, to account quantitatively for theet of EPIC production rules. Using additioniaeotaped
results in manypublished experiments. The correct  performancesthe predictions ofthe EPIC modelere
interpretation of the PRP effect is that in ordecdaform compared to actual data atthe same fine-grained level. The
to the task instructions, subjects must adopt a strabegy predictions of task execution time were accursitain
delays initiating the second response until theyemsure 10%. The EPICarchitecture accurately represented the
that it does not occur before the firstsponse; the perceptual and motaronstraints inthe task, making it
magnitude of the delay in the second response depends gossible to easily construct a model on an a-priori basis that
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predicts the task time accurately enough to aidhimosing
between alternative designs.

4 Models for Tracking/Choice Dual Tasks

The main focus of this paper is on a clasdi@al-task
paradigm involving simultaneous trackirend choice

The compensatory tracking task uses the portion of the
display in the upper box; a cursor (the cross) mustepe
centered on a target (the small circle), usingyestick
manipulated by the right hand. Occasionallgtimulus
appears in the choice stimulus area (the solid cbrelew
the tracking box), which is either a left- Bght-pointing
arrow (not shown to scale in the display). The subject must

reaction. The remainder of the paper will describe tWoggnond by pressing one of two buttons with the left hand as

studies, one involving a simple form of this paradigm, the,

other, still in progress, involving a compleform.
Developing an EPIC model for tracking brings ouany

soon as possible, while attempting to maintain the cursor on
the target.

key issues about the nature of tracking; our approach hastpq major independent variable is the distanceignal

been to represent tracking movements as a distiottr
processor "style" in which the human hasvell-learned
skill for operatingthe tracking control;the cognitive
processor need only supervise the process.

4.1 ASimple Tracking/Choice Task

We have modeled some results obtained Ngrtin-
Emersonand Wckens (1992) whichare especially

angle) between the tracking target and the chsiiceulus,

and a second variable is the difficulty of the trackamk.

The two dependent variables are the reaction time to the
choice task and the RMS error in theacking task,
collected for a two-second period following the onset of the
choice stimulus. As shown by the Observed curves in
Figure 3, choice reaction time increases with ahgular
distance between the target and the choice stimulus, but is

revealing about the role of eye movements and the use @affected by tracking difficultyThe RMS erroincreases
visual information during such a dual task. Figure 2 showsomewhat with the angul@eparationand to anequal
the EPIC model display of the task. The display is Notayient for both levels of tracking difficulty.

exactly like the actual experimental display; rather we use

such displays as a debugging aid to show what the modelis our models for this task assume that successicking

doing during development. The display shows\tiseal
environment of EPIC with the objects in their corrgzes

requires that the eye be kept on the tracking cursor, but that
in order to discriminate the choice stimulus, the eye must be

and positions; the small gray circle shows the location anghgyed to the choice stimulusHowever, ifthe choice
size of EPIC's fovea, currently on the choice stimulus, andtimulus is close enough to the eye positiparafoveal

the larger gray circle marks the boundary of gheafovea,
a region of intermediate discriminative ability.

lisual Space
ime:23499 Err: 0.50 VA RMS: 0.64 Sc-RMS:

11.03

FLY RIGHT

i FIXATE

ART: B226.

vision will be adequate to discriminate the stimulus without
moving the eye. Hence the two tasks often, but not always,
compete for use of the eyeFinally, because botkasks
involve manual responses, they compete for access to the
manual motoprocessor. Wavill illustrate how EPIC can

be applied to this task with two models.

4.1.1 Asimple lockout model

The Lockout Model uses a simp$trategy, shown in
flowchart form in Figure 4, that isconsistentwith
traditional thinking about dual task situations, namely the
lower priority task is locked oufsuspended) while the
higher priority task is executed. The tracking tasles
simply make a motor movement whenever the cursor is
adequatelyfar off the target. Theexecutiveprocess
normally allocates control of the eye to the trackask,
where a production rule ensures thhe eye makes a
movement to the cursor anytime it is too far off. The
oculomotor processor also can autonomously nekall
adjustmentsusing perceptuainformation about object
movements. When the choicestimulus appears, the
executive process suspends the tracking task, activates the
choice task, and then allocates control of the eye to the
choice task, moving it to the stimulus if it is too far away to
be discriminated. When the choice response hlasen

Figure 2. EPIC model display for the Martin-Emerson andinitiated, the executive resumethe tracking task and

Wickens task.

returns control of the eye to the tracking task. In this way,
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Figure 3. Predictecand observed effects afimulus ~ Of the perceptual and motor parameters involvBdther,
separation and tracking difficulty for the Lockddbdel. ~ Note that the RMS error is measured for a brief (#sipd
Observed are large solid points and lines; predicted areof time starting with the onset of the choisgmulus,

small open points and dotted lines. meaning that if trackingis suspended for too lauging
this period, the effect will bsubstantial. The Lockout

Model suspends the tracking task for such a long tirae

using what we term lockowchedulingthe executive  cqnsigerable tracking error accumulates: it is simply too
process allows only one task to be done at a temsuring  ;-«ficient.

that the choice task has priority over the tracking task, and
that the eye and the manual motor processor areusely 4.1.2 An interleaved model

for one task at a time. We constructed a second model, the Interleaved Model, in
which the executive overlaps the processing on the two
Unfortunately, this simple strategy doest fit all aspects  535ks as much as possible; this strategy is showgime
of the data. Figure 3 shows the predicted abserved 5 \yhen the choice stimulus appears, the executivees
values for the choice reaction time and the tracldmgr.  the eye to the choice stimulus, and then immediately begins
Using a best estimate from the data of peceptual 5 move it back, relying on the "pipeline” property of the
recognition timefor the choice stimulus, we can fit the igyal system to acquire the stimulus and continue to
choice reaction time data fairly well. There is no effect Ofprocess it, even after the eye has returned tdréioking
tracking task difficulty sincethe choice task iggiven  cyrsor. The tracking taskis suspended only while the eye is
priority over tracking. The first few points are faiflgt,  away looking at the stimulus arrow for the choice task. The
due to the parafoveal recognition of the chatienulus.  odel uses the same approach as in our PRP models for
The upward slope of the curves at larger separations reflecf§ocating control of the manual motor processor. When the
the time required to move the eye. The fit ofsheulated  chojce task rules have chosen the response, it signals the
tracking data is extremelgoor, however. The overall executive, which again suspentte tracking task, and
magnitude of tracking error is seriously over predicted, as ig|jows the choice task to command the marmuator
the effect of tracking difficulty and the effect wifsual processorand then resumes the tracking task rigivay.
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Thus, the same task priorities are honored, butr#oking
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times are again well fit, but now th&acking task 0 10 20 80 ac
predictionsare extremely close as well. Since the Separation (degrees)

interleaved executive allocatélse eye and themanual Figure 6. Predictecand observed effects aftimulus
motor processor to the tracking task for thaximum  genarationand tracking difficulty for the Interleaved
amount of time, the tracking task rules can squeeze in afey\;gqel.  Observedire large solid points andines:

moveme_nts while the phoice taskuisderway, resulting in predicted are small open points and dotted lines.
substantially less tracking error than the Lockout Model.

a general conclusion (also observed in our earlier work) is

4.1.3 Conclusions that the exercise of seeking quantitatively accurate accounts
Two important substantive conclusions stem frins  of data within a fixed architecture is extremely informative,

modeling work. First, the control of the eye is critical in both about the accuracy of the architecture theoryatswl
dual task paradigms. Second, subjects canappdrently  the structure and requirements of the task.
do use subtlestrategiedor coordinatingdual tasks in . o )
surprisingly efficient ways. 4.2 A Complex Tracking/Decision-Making Task

The modeling work on the Martin-Emerson andkgns

Another general conclusion concerns @eommon  task laid the foundations for our current work omare

misunderstanding about computational modelhey do  complex dual tracking/choicetask.  This task was
not in fact have so many "degrees of freedom" that they cadeveloped by Ballas, Heitmeyeamnd Perez (19924992b)
be made to fit any data at any time. As in other efforts suclo resemble a class of tasks performed in combat aircraft in
as ACT and SOAR, working within the fixedPIC which analyzing the tactical situation is partialytomated
architecturesets powerfutonstraints. Giverthe basic by an on-board computer. To help the explanation, Figure 7
lockout strategy, there were no parameter values or specifishows our EPIC model display for this task. The right hand
strategy details that would allow us to fit the data as @ox contains a pursuit tracking task in which thesor
whole. The only way EPIC could be applied to fit tteda  (cross) must be kept on the target (small box); the eye is
was by assuming &undamentally differenstrategy. Of  shown currently on theursor. Average tracking error data
course, further empirical work could be done (e.g. eyewere collected during various phases of gweriment.
tracking) to determine whethehe InterleavedModel The left-handbox contains the choice task, tactical
strategy in fact describes the use of the eye correctly. Thudgecision task in which object®r "tracks") must be
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: Visual Space task would become difficult, and the on-boamputer
Pemaal NIL 1L NiL, Outaminic > oot Ermis0.48 would take over the tactical task, signaling when it did so.
Jlode: MANUAL The computer would then generate the correct responses to
: each object at the appropriate time, with the col@nges
2BLK showing on the display as in the manual version of the task.
e Later, the tracking would become easy again, and the
; i computer would signal and then return the tactical task to
pBLK / \‘g the subject. Ballas et al. observed an automatégicit

' : effect, in which for a time after resuming the tactieak,

Y subjects produced longer response times in the tatdslal
Q AN compared to their normal steady-state manual performance.
/ This effect represents some of the serious concavost

\_/ \\\ possible negative effects ofutomation in combat

situations; ifthe automation fails, the operator ckatck
situation awareness, and it might take a long tim&atch
up."

4.2.1 A preliminary model

classified as hostile or neutral based on tfehavior. At the time of this writing, our EPIC models for the
These objects represent fighter aircraft, cargo airplanes, arghy||as task are in a preliminary stage; we have not yet
SAM sites that move down the display as Bubjects peqgun to produceuantitatively accuratéits, but have
aircraft travels. begun to capturehe qualitative phenomena. This

. description ofour results is subject to revision later
In the actual Ballas et al. (1992dipplay, each type of  presentations of this work.

object was coded by an icon; feimplicity, in the EPIC

display they are represented instead by a deiter. A We have estimated the parameters for the basic perceptual
track number identifies each object. Objects appear  encoding operations required in the tactical taskmely

the top of thedisplay, and then move down théisplay.  recoding the blue and red colors to the appropriate key, and
After some time, the on-board computer would attempt toyecognizing the hostility of behaviors of different kinds of
designate the objects, indicating the outcomehanging objects, which takes considerably longer (mtnan a

the object color from black to red, blue, or amber, which thesecond). We have assumed that assessing the hostility of an
EPIC display shows with a three-character abbreviation. 'Bbject requires that it be fixated, but that an objeoter

the object became red (hostile) or blue (neutralgtitgect  \yould be availableparafoveally,and color changedike

had to simply confirm the computectassification; the  gpject onsets and offsets, would be visibleparipheral
responsewas typing on a keypad akey for the \jsion.

hostile/neutral designation followed by the key for the track
number. Ifthe object becamamber,the subject had to Our current preliminary model is an initial simmee,

classify the object based on a set of rules foraitject's  stryctured much like the lockout model described above for
behavior,and then type the hostility designation aratk  the Martin-Emersorand Wickens task: we may need a
number. After the response, the object changed color tomgre complex interleaved model to fully fitthe data. When
white, and then disappeared from the display stime  tne tactical task is being done by the subject (as opposed to
later. The basic dependent variable is the reaction time tQhe on-board computer), the executive process allows the
the objects, measured from when the object chaoged  {racking task to run until it is time to work on ttetical
to when the first of the two response keystrokes were madeyecision task. Thus it ignores the simple appearance of an
object and instead waits for a detection of a color change in
Ballas et al. varied two major aspects of this task. Ongeripheral vision. The executive then suspends the tracking
set of manipulations concerned the format of tietical (55K, and allocates the eye to the tactical task. The eye is
display and the response. The above description is for onggyved to the changed object, and the approprisgonse
of the four combinations; the other combinaticnssisted  ade when the perceptuaformation (color coding or
of using a tabular display instead of the graphical radar-like,ostility behavior) becomes available. If additional objects
display, and a touchscreen response procedure instead gfye changed color in the meantime, the tactical talsis
the keypad. At this time we have modeled only the ongngpse one at random, move the eye to it, and process it.
interface combination described above. When no more objects remain to be processedraisking
task terminates, and the executive then returns control of
The second manipulation concerns the effecedaptive  the eye to the tracking task and restarts it. We expect to be
automation. From time to time during the task, the trackingyple to fit the tactical reaction time data and titaeking

9
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Figure 7. EPIC model display for the Ballas et al. task.



task performance well, since this task is essentially just Visual Space

I I n- f Time:4582 Err: 1.39 VA Err: 0.89 Scl Err:26.24
complicated version of th#lartin-Emersorand Wckens e 1L TS~ o ML o
task. At this point, our preliminary model reproduces the *ede: y . AN
gualitative relationships associated with singhed dual- !

task reaction times and average tracking errors.

4.2.2 Apreliminary explanation of the automation FAME

deficit effect

More interesting though, is our current hypothesis for the
source of the automation deficit effect. We assuinag
when the tactical task is automated, the subgaoply
ignores the color changes appearing in the tadisalay
and does not bother to store any information about the sta
of the display in workingnemory. When it is time to
resume the tactical task, multiple objects typically need tc
be processed, and since there is no record of wiaeh

changed colors or the order in which they appeared, the ta‘rigure 8.  Automation deficit effect: After resuming the

strategy simply picks the first one to inspectrandom.  tactical task, the model inspects the objects out of order.
After moving the eye to it and waiting for the color to

become available, the strategy processes the objesuas ~ 4-2.3 Conclusions and current plans

if itis red, blue, or amber. However, if it is white or black, At the time of this writing, our preliminary model for

it cannot be processed, and so another object is picked Bgllas et al. does not yet produce the quantitatively accurate

random. When all candidate objects have been dathlt  times for the single-task processing, andgs@ntitative

tracking is resumedand future objectthanges are predictions ofthe automation deficit effecare not yet

processed as they appear. definite. However, using the Ballas et al. measure, our
preliminary model produces an automation deficiabdut

The automation deficit results from the fact that when the500 ms with two of the actual taskcenarioswhich

tactical task is being performatbrmally, objects are compares favorably to the value of about 80Coinserved

usually processed inhe order that they changmlor, in the sameinterface condition overll of the task

keeping the average reaction time to a minimum. Inscenarios. Thus our current hypothesis about the cause of

contrast, when the tactical task is resumed, mulbpjects  the automation deficit appears plausible and worth pursuing

must be inspected, and no information has been kept on tharther.

order in which they have appeared or changelbr

(otherwise, the automation is of little value!). Thus the Our current plan is to develop a model tlaatounts

objects are inspected in randonder, meaning that objects quantitativelyfor performance in all of the Ballas et al.

that changed first will have to wait longer on the average tq1992a) experiment conditions, includinige effects of

be inspected than if they were processed in order. different display and response formats, as well as the
automation deficit, and the interactions of all of the factors.

+0

Trial:0 RT: 0. ART: 0.

Figure 8 illustrates what can happen during tactiasik
resumption. Although Track 1 (a blue planeas the If our current explanation for the automation deficit is
earliest changing object, the strategy happenegité borne out by our more complete and accurate models, there
Track 2 (a red fighter) to process first instead. Afteck  may be some important implications for display dask
2 is processedthe strategy will chooseone of the design. For example, according tdhis hypothesis,
remaining three objects to inspect next. If Track 4 isresuming the tactical task could be done more efficiently if
chosen, time would be wasted since a black tafgatld it is possible to easily detect the highest-priority object on
not be processed yet; if Track 3 (an amber plangiclseed,  the display. That is, suppose thérst-changedobject
the other tracks would go unprocessed for a long time whileurrently on the display was coded by makindlitk,
the model waits for the hostility status of Track 3 to becomevhich would be salient in peripheral vision. Tégbject
apparent. Thus it may be a long time before Tragets  could simply look at the blinking object in orderdnsure
processed. As the model performs the task, it will catch uphat the objects were processed in priorityorder.
after some time, and objects will again be processed mostilternatively, the automated version of the task could use a
in the order that they change. Thus, relativetéady-state  different, less salient, way of representingatgivity, so
performance, performance on the tactical tastteigressed that the subject could still profitably monitor for tbeme
for some timefollowing its resumption;temporarily, perceptual events that are important in the manual version.
objects may take longer than normal to get processed.

Of course, how these issues show up in actoakpit
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displays must be considerduljt we are optimistithat
EPIC will provide a framework for analyzirigterface
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